K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

Ta có:\(x\left(x+1\right)=y^2+1\Leftrightarrow x^2+x=y^2+1\Leftrightarrow4x^2+4x+1=4y^2+5\)

\(\Leftrightarrow\left(2x+1\right)^2-4y^2=5\Leftrightarrow\left(2x+2y+1\right).\left(2x-2y+1\right)=5\)

Do x,y thuộc Z nên  2x+2y+1 và 2x-2y+1 là ước của 5

Ta có bảng giá trị :

2x+2y+115-1-5
2x-2y+151-5-1
x11-2-2
y-111-1

Vậy \(\left(x;y\right)\in\left\{\left(1;-1\right);\left(1;1\right);\left(-2;1\right);\left(-2;-1\right)\right\}\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:

Đặt $x+y=a; 3x+2y=b$ với $a,b\in\mathbb{Z}$ thì pt trở thành:

$ab^2=b-a-1$

$\Leftrightarrow ab^2+a+1-b=0$

$\Leftrightarrow a(b^2+1)+(1-b)=0$

$\Leftrightarrow a=\frac{b-1}{b^2+1}$

Để $a$ nguyên thì $b-1\vdots b^2+1$

$\Rightarrow b^2-b\vdots b^2+1$

$\Rightarrow (b^2+1)-(b+1)\vdots b^2+1$

$\Rightarrow b+1\vdots b^2+1$

Kết hợp với $b-1\vdots b^2+1$

$\Rightarrow (b+1)-(b-1)\vdots b^2+1$

$\Rightarrow 2\vdots b^2+1$
Vì $b^2+1\geq 1$ nên $b^2+1=1$ hoặc $b^2+1=2$
Nếu $b^2+1=1\Rightarrow b=0$. Khi đó $a=\frac{b-1}{b^2+1}=-1$
Vậy $x+y=-1; 3x+2y=0\Rightarrow x=2; y=-3$ (tm) 

Nếu $b^2+1=2\Rightarrow b=\pm 1$
Với $b=1$ thì $a=\frac{b-1}{b^2+1}=0$

Vậy $x+y=0; 3x+2y=1\Rightarrow x=1; y=-1$ (tm)

Với $b=-1$ thì $a=-1$

Vậy $x+y=-1; 3x+2y=-1\Rightarrow x=1; y=-2$ (tm)

20 tháng 8 2015

Từ phương trình \(y\left(x-1\right)=x^2+2\Rightarrow x^2+2\vdots x-1\to x^2-1+3\vdots x-1\to3\vdots x-1\to x-1=\pm1,\pm3.\)

Do vậy mà \(x=2,0,4,-2\).  Tương ứng ta có \(y=6,-2,6,-2\)

Vậy các nghiệm nguyên của phương trình \(\left(x,y\right)=\left(2,6\right),\left(0,-2\right),\left(4,6\right),\left(-2,-2\right).\)

 

3 tháng 1 2016

ban tim tren mang co do 

NV
14 tháng 3 2022

- Với \(x=1\) ko thỏa mãn

- Với \(x=2\Rightarrow\dfrac{2}{2y+2}\in Z\Rightarrow\dfrac{1}{y+1}\in Z\Rightarrow y=\left\{-2;0\right\}\) ko thỏa mãn

- Với \(x\ge3\)

\(x^2-2⋮xy+2\Rightarrow x\left(xy+2\right)-y\left(x^2-2\right)⋮xy+2\)

\(\Rightarrow2\left(x+y\right)⋮xy+2\)

\(\Rightarrow\left(x-2\right)\left(y-2\right)\le2\)

\(\Rightarrow y-2\le\dfrac{2}{x-2}\le\dfrac{2}{3-2}=2\Rightarrow y\le4\)

\(\Rightarrow y=\left\{1;2;3;4\right\}\)

Lần lượt thay 3 giá trị của y vào pt biểu thức ban đầu

Ví dụ: \(y=1\Rightarrow\dfrac{x^2-2}{x+2}\in Z\Rightarrow x-2+\dfrac{2}{x+2}\in Z\)

\(\Rightarrow x+2=Ư\left(2\right)\Rightarrow\) ko tồn tại x nguyên dương t/m

Tương tự...

14 tháng 3 2022

Em cả mơn thầy 

Thầy mãi đỉnh