K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2021

x( x + y )2 - y + 1 = 0

<=> x( x2 + 2xy + y2 ) - y + 1 = 0

<=> x3 + 2x2y + xy2 - y + 1 = 0

<=> xy2 + ( 2x2 - 1 )y + x3 + 1 = 0 (*)

Coi (*) là phương trình bậc 2 ẩn y , x là tham số 

(*) có nghiệm <=> Δ ≥ 0 <=> ( 2x2 - 1 )2 - 4x( x3 + 1 ) ≥ 0

<=> 4x4 - 4x2 + 1 - 4x4 - 4x ≥  0

<=> -4x2 - 4x + 1 ≥ 0

<=> \(\frac{-1-\sqrt{2}}{2}\le x\le\frac{-1+\sqrt{2}}{2}\)

Vì x nguyên => x ∈ { -1 ; 0 } 

+) Với x = -1 (*) trở thành -y2 + y = 0 <=> y( 1 - y ) = 0 <=> y = 0 (tm) hoặc y = 1 (tm)

+) Với x = 0 (*) trở thành -y + 1 = 0 <=> y = 1 (tm)

Vậy ( x ; y ) = { ( -1 ; 0 ) , ( -1 ; 1 ) , ( 0 ; 1 ) }

23 tháng 6 2021

cậu ơi có thể giải bài này mà ko dùng denta đc ko ?

25 tháng 11 2023

Sử dụng phương pháp Delta cho bài toán này:

\(2x^2+5y^2-4\left(xy+1\right)=7\)

\(\Leftrightarrow2x^2-4xy+\left(5y^2-11\right)=0\left(1\right)\)

Xét phương trình (1) là phương trình bậc 2 ẩn x có tham số là y.

Ta có: \(\Delta'=\left(\dfrac{-4y}{2}\right)^2-2\left(5y^2-11\right)=-6y^2+22\ge0\)

\(\Rightarrow-\sqrt{\dfrac{22}{6}}\le y\le\sqrt{\dfrac{22}{6}}\) hay \(-1\le y\le1\)(vì y nguyên).

Với y=-1 , ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)

Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại) 

Với \(y=1\), ta có: \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)

Vậy....

Ngoài phương pháp này, ta cũng có thể sử dụng 1 phương pháp khác, đó là phương pháp kẹp:

\(2x^2+5y^2-4\left(xy+1\right)=7\)

\(\Leftrightarrow2\left(x-y\right)^2+3y^2=11\)

\(\Rightarrow3y^2\le11\Rightarrow-1\le y\le1\) (do y là số nguyên)

Đến đây ta xét các trường hợp:

Với \(y=1\), ta có \(\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\) (nhận)

Với \(y=-1\), ta có \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\) (nhận)

Với \(y=0\), ta có \(x=\pm\sqrt{\dfrac{11}{2}}\) (loại)

Vậy...

 

 

27 tháng 11 2023

cảm ơn bạn nhưng còn hơi dài =))

1 tháng 2

\(x^2+5y^2+2y+4xy-3=0\)
\(\Leftrightarrow\)\((x^2+4xy+4y^2)+(y^2+2y+1)=4\)
\(\Leftrightarrow\)\((x+2y)^2+(y+1)^2=4\)
\(\Leftrightarrow\)\((x+2y)^2=4-(y+1)^2\)
\(\Leftrightarrow\)\((x+2y)^2=(2-y-1)(2+y+1)\)
\(\Leftrightarrow\)\((x+2y)^2=(1-y)(3+y)\)
\(Vì \) \((x+2y)^2\geq0\)
\(\Rightarrow\)\((1-y)(3+y)\geq0\)
\(\Rightarrow\)\(\left[\begin{array}{} \begin{cases} 1-y\geq0\\ 3+y\geq0 \end{cases}\\ \begin{cases} 1-y\leq0\\ 3+y\leq0 \end{cases} \end{array} \right.\)
\(\Rightarrow\)\(\left[\begin{array}{} \begin{cases} y\leq1\\ y\geq-3 \end{cases}\\ \begin{cases} y\geq1\text{(Vô lí)}\\ y\leq-3\text{(Vô lí)} \end{cases} \end{array} \right.\)
\(\Rightarrow\)\(-3\leq y\leq1\)
\(\text{Mà y là số nhỏ nhất}\)
\(\Rightarrow\)\(y=-3\)
\(\Rightarrow\)\(x+2.(-3)=0\text{ (Vì }(x+2y)^2\geq0)\)
\(\Rightarrow\)\(x=6\)
\(\text{Vậy cặp số (x,y) thỏa mãn yêu cầu bài toán là: (6;-3)}\)
Nếu mình đúng cho mình xin 1 like nha

Ta có \(y^2+y=x^4+x^3+x^2+x\)

\(\Leftrightarrow\left(2y+1\right)^2=4x^4+4x^3+4x^2+x+1\)

Nếu \(\left(2y+1\right)^2< \left(2x^2+x\right)^2\Rightarrow3x^2+4x+1< 0\Rightarrow\frac{-1}{3}< x< -1\)vô lí

Vậy \(\left(2y+1\right)^2\ge\left(2x^2+x\right)^2\)mặt khác\(\left(2y+1\right)^2< \left(2x^2+x+2\right)^2\)nên theo điều kiện chặn ta sẽ tìm được x;y thỏa mãn

16 tháng 2 2021

\(x^2-\left(2007+y\right)x+3+y=0\)

\(\Leftrightarrow x^2-2007x-xy+3+y=0\)

\(\Leftrightarrow x^2-x-2006x+2006-xy+y=2003\)

\(\Leftrightarrow x\left(x-1\right)-2006\left(x-1\right)-y\left(x-1\right)=2003\)

\(\Leftrightarrow\left(x-1\right)\left(x-2006-y\right)=2003\)

Do x;y là số nguyên nên x-1 là ước của 2003, 2003 là số nguyên tố nên ta có \(x-1=\left\{-2003;-1;1;2003\right\}\)

\(\Rightarrow x=\left\{-2002;0;2;2004\right\}\)

Với x=-2002 thì -2002-2006-y=-1 => y=-4007

Với x=0 thì 0-2006-y=-2003 => y=-3

Với x=2 thì 2-2006-y=2003 => y=-4007

Với x=2004 thì 2004-2006-y=1 => y=-3

Vậy các cặp số nguyên (x;y) cần tìm là (-2002;-4007);(-2;-4007);(0;-3);(2004;-3)