Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 2n-24=2(n+3)-30
Để 2n-24 chia hết cho n+3 thì 2(n+3)-30 chia hết cho n+3
Vì 2(n+3) chia hết cho n+3
=> 30 chia hết cho n+3
Vì n thuộc N => n+3 thuộc N
=> n+3 thuộc Ư (30)={1;2;3;5;6;10;15;30}
Đến đây lập bảng làm tiếp nhé!
a ) 2n + 3 chia hết cho n - 1
=> 2n - 2 + 5 chia hết cho n - 1
2 ( n - 1 ) + 5 chia hết cho n - 1
Mà : 2 ( n - 1 ) chia hết cho n - 1
=> 5 chia hết cho n - 1
=> n - 1 thuộc Ư(5) ={ 1 ; 5 }
=> n thuộc { 2 ; 6 }
Vậy : n thuộc { 2 ; 6 }
b ) n2 + 4 chia hết cho n2 + 1
=> ( n2 + 1 ) + 3 chia hết cho n2 + 1
Mà : n2 + 1 chia hết cho n2 + 1
=> 3 chia hết cho n2 + 1
=> n2 + 1 thuộc Ư(3) ={ 1 ; 3 }
+ Nếu n2 + 1 = 1
=> n2 = 0 => n = 0 ( Nhận )
+ Nếu n2 + 1 = 3
=> n2 = 2 ( Vô lí ) ( Loại )
Vậy : n = 0
< Tích nha >
Để \(5n+19⋮n+3\)
\(\Rightarrow5n+15+4⋮n+3\)
\(\Rightarrow5\left(n+3\right)+4⋮n+3\)
Vì \(5\left(n+3\right)⋮n+3\Rightarrow4⋮n+3\Rightarrow n+3\inƯ\left(4\right)\Rightarrow n+3\in\left\{1;2;4\right\}\Rightarrow n\in\left\{-2;-1;1\right\}\)
Mà n là só tự nhiên => n = 1
Vậy n = 1
a)
\(n+4⋮n+1\Leftrightarrow\left(n+1\right)+3⋮n+1\)
\(3⋮n+1\)(vì n+1 chia hết cho n+1)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{1;3\right\}\)
\(n+1=1\Rightarrow n=0\)
\(n+1=3\Rightarrow n=2\)
Vậy \(n\in\left\{0;2\right\}\)
b)
\(2n+3⋮n+1\Leftrightarrow2\left(n+1\right)+1⋮n+1\)
\(\Rightarrow1⋮n+1\)(vì 2(n+1) chia hết cho n+1)
\(\Rightarrow n+1\inƯ\left(1\right)=\left\{1\right\}\)
\(\Rightarrow n+1=1\Rightarrow n=0\)
Vậy \(n=0\)
a)
(n + 4 ) chia hết ( n + 1 )
(n + 1 ) +3 chia hết ( n + 1 )
vì n+1 luôn chia hết cho n+1 nên để (n + 1 ) +3 chia hết ( n + 1 ) thì 3 cũng phải chia hết cho n+1
=> n+1 thuộc Ư( 3 )
b)
tương tự phần a
cho mk nha
ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)
câu b và d bn tham khảo ở link này https://olm.vn/hoi-dap/detail/196836149523.html
câu a và câu c bn tham khảo ở link sau https://olm.vn/hoi-dap/detail/65130381377.html
để \(7⋮n+3\)
\(\Rightarrow n+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
ta có bảng:
n+3 | 1 | -1 | 7 | -7 |
n | -2 | -4 | 4 | -10 |
vì \(n\inℕ\)
=>\(n\in\left\{4\right\}\)
b)
\(18⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(18\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm9;\pm18\right\}\)
ta có bảng
2n+1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 9 | -9 | 18 | -18 | |
n | 0 | -1 | \(\frac{1}{2}\) | \(\frac{-3}{2}\) | 1 | -2 | \(\frac{3}{2}\) | \(\frac{-5}{2}\) | \(\frac{5}{2}\) | \(\frac{-7}{2}\) | 4 | -5 | \(\frac{17}{2}\) | \(\frac{-19}{2}\) |
mà \(x\inℕ\)
\(\Rightarrow x\in\left\{0;4;1\right\}\)
a) 4n-5 chia hết cho 13
4n-5
=4n+35n-35n-5
=39n-5(7n-1) chia hết cho 39
vì 39 chia hết cho 13
=> 39n-5(7n-1) chia hết cho 13
=> 4n-5 chia hết cho 13
\(n+3⋮n+1\)
\(\Leftrightarrow\left(n+1\right)+2⋮n+1\)
\(\Leftrightarrow2⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bẳng sau:
Vậy: \(n\in\left\{-3;-2;0;1\right\}\)
sai rồi bạn