\(A=2n^3-3n+1\) là số nguyên tố

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A = (2n)^3−3n+1

 A = (2n)^3−2n−n+1

 A = 2n(n^2−1)−(n−1)

 A = 2n(n−1)(n+1)−(n−1)

 A = (2n^2+2n−1)(n−1)

Vì A là số nguyên tố nên n - 1 = 1

 n = 2

7 tháng 7 2021

A = \((2n)^{3} - 3n + 1 \)

\(\Leftrightarrow\) A = \((2n)^{3} - 2n - n + 1\)

\(\Leftrightarrow\) A = \(2n (n^{2} - 1) - ( n-1)\)

\(\Leftrightarrow\) A = \(2n(n - 1)(n+1)-(n-1)\)

\(\Leftrightarrow\) A = \((2n^{2} +2n-1)(n-1)\)

Vì A là số nguyên tố nên n - 1 = 1

\(\Rightarrow\) n = 2

 

giúp e vs .e đang cần gấp

19 tháng 3 2017

a) ta có A=n2(n-1)+(n-1)=(n-1)(n2+1)

vì A nguyên tố nên A chỉ có 2 ước

TH1 n-1=1 và n2+1 nguyên tố => n=2 và n2+1=5 thỏa mãn

TH2 n2+1=1 và n-1 nguyên tố => n=0 và n-1 = -1 k thỏa mãn

vậy n=2

xin lỗi mình chỉ biết làm phần a thôi còn phần b,c bạn tự làm nhé

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
17 tháng 8 2020

Với n = 0 => A = 03 - 2.02 + 2.0 - 4 = -4 ko là số nguyên tố

 n = 1 => A = 13 - 2.12 + 2.1 - 4 = 1 - 2 + 2 - 4  = -3 ko là số nguyên tố

n = 2 => A = 23 - 2.22 + 2.2 - 4 = 0 ko là số nguyên tố

n = 3 => A = 33 - 2.32 + 2.3 - 4 = 11 là số nguyên tố

Với n \(\ge\)4 => A = n3 - 2n2 + 2n - 4 = n2(n - 2) + 2(n - 2) = (n2 + 2)(n - 2) có nhiều hơn 2 ước

=> A là hợp số

Vậy Với n = 3 thì A là số nguyên tố

17 tháng 7 2018

a)   \(A=12n^2-5n-25\)

\(=12n^2+15n-20n-25\)

\(=3n\left(4n+5\right)-5\left(4n+5\right)\)

\(=\left(3n-5\right)\left(4n+5\right)\)

Do số nguyên tố khi phân tích thành nhân tử bao giờ cũng chỉ gồm 1 và chính nó

nên  A là số nguyên tố thì:   \(\orbr{\begin{cases}3n-5=1\\4n+5=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=2\\n=-1\end{cases}}\)

do n là số tự nhiên nên \(n=2\)

thử lại:  n=2  thì  A = 13 là số nguyên tố

Vậy n = 2

17 tháng 7 2018

b)  \(B=8n^2+10n+3\)

\(=8n+6n+4n+3\)

\(=2n\left(4n+3\right)+\left(4n+3\right)\)

\(=\left(2n+1\right)\left(4n+3\right)\)

Để B là số nguyên tố thì:   \(\orbr{\begin{cases}2n+1=1\\4n+3=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=0\\n=-\frac{1}{2}\end{cases}}\)

Do n là số tự nhiên nên  n = 0

Thử lại: \(n=0\)thì    \(B=3\)là số nguyên tố

Vậy  \(n=0\)

15 tháng 4 2018

\(-2n+9\) là số nguyên tố

\(\Rightarrow\)\(-2n+9>0\)

\(\Rightarrow\)\(2n< 9\)

\(\Rightarrow\)\(n< 4,5\)

do  \(n\in N\) \(\Rightarrow\)\(n=\left\{1,2,3,4\right\}\)

Với  \(n=1\)\(\Rightarrow\)\(2n+1=3\) ko phải số chính phương   (loại)

Với  \(n=2\)\(\Rightarrow\)\(2n+1=5\)ko phải số chính phương    (loại) 

Với  \(n=3\)\(\Rightarrow\)\(3n+1=10\)ko phải số chính phương    (loại) 

Với  \(n=4\) \(\Rightarrow\)\(3n+1=13\)ko phải số chính phương    (loại) 

Vậy ko tìm đc  \(x\in N\)thỏa mãn:  2n+1;  3n+1  là số chính phương  và   -2n+9   là số nguyên tố

11 tháng 4 2018

bài khó à nha

ko dễ