Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có A=n2(n-1)+(n-1)=(n-1)(n2+1)
vì A nguyên tố nên A chỉ có 2 ước
TH1 n-1=1 và n2+1 nguyên tố => n=2 và n2+1=5 thỏa mãn
TH2 n2+1=1 và n-1 nguyên tố => n=0 và n-1 = -1 k thỏa mãn
vậy n=2
xin lỗi mình chỉ biết làm phần a thôi còn phần b,c bạn tự làm nhé
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
ta có:
n4+3n3-22n2+6n : n2+2 = n2+3n-24 dư 48
=> n4+3n3-22n2+6n = (n2+3n-24) + \(\frac{48}{n^2+2}\)
=> n2+2 thuộc Ư(48) = {-1;-2;-3;-4;-6;-8;-12;-16;-24;-48;1;2;3;4;6;8;12;16;24;48} (n2+2 luôn dương)
=> n2 = {2-2; 3-2; 4-2;.........} = {0; 1; 2; 3; 4; 6;......... }
mà A có giá trị nguyên nên n2 = {0; 1; 4}
=> n = {0; ±1; ±2}
a) \(A=12n^2-5n-25\)
\(=12n^2+15n-20n-25\)
\(=3n\left(4n+5\right)-5\left(4n+5\right)\)
\(=\left(3n-5\right)\left(4n+5\right)\)
Do số nguyên tố khi phân tích thành nhân tử bao giờ cũng chỉ gồm 1 và chính nó
nên A là số nguyên tố thì: \(\orbr{\begin{cases}3n-5=1\\4n+5=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=2\\n=-1\end{cases}}\)
do n là số tự nhiên nên \(n=2\)
thử lại: n=2 thì A = 13 là số nguyên tố
Vậy n = 2
b) \(B=8n^2+10n+3\)
\(=8n+6n+4n+3\)
\(=2n\left(4n+3\right)+\left(4n+3\right)\)
\(=\left(2n+1\right)\left(4n+3\right)\)
Để B là số nguyên tố thì: \(\orbr{\begin{cases}2n+1=1\\4n+3=1\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}n=0\\n=-\frac{1}{2}\end{cases}}\)
Do n là số tự nhiên nên n = 0
Thử lại: \(n=0\)thì \(B=3\)là số nguyên tố
Vậy \(n=0\)
A = (2n)^3−3n+1
⇔ A = (2n)^3−2n−n+1
⇔ A = 2n(n^2−1)−(n−1)
⇔ A = 2n(n−1)(n+1)−(n−1)
⇔ A = (2n^2+2n−1)(n−1)
Vì A là số nguyên tố nên n - 1 = 1
⇒ n = 2
Có \(B=n^4-27n^2+121\)
\(=n^4+22n^2+121-49n^2\)
\(=\left(n^2+11\right)^2-\left(7n\right)^2\)
\(=\left(n^2+11-7n\right)\cdot\left(n^2+11+7n\right)\)
Vì \(n\in N\)nên \(n^2+7n+11>11\)
Nếu \(n^2-7n+11< 0\Rightarrow B< 0\left(loại\right)\)
Nếu \(n^2-7n+11=0\Rightarrow B=0\left(loại\right)\)
Nếu \(n^2-7n+11>1\)(loại vì B là tích của 2 số nguyên dương > 1 nên ko là số nguyên tố)
Vậy nên \(n^2-7n+11=1\)
\(\Leftrightarrow n^2-7n+10=0\)
\(\Leftrightarrow n^2-2n-5n+10=0\)
\(\Leftrightarrow\left(n-2\right)\cdot\left(n-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}n-2=0\\n-5=0\end{cases}\Rightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}}\)
Vậy.............
Bài 1:
Để \(\dfrac{n^2+7}{n+7}\) là số tự nhiên thì \(\left\{{}\begin{matrix}n^2+7⋮n+7\\n>-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n^2-49+56⋮n+7\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+7\in\left\{1;-1;2;-2;4;-4;7;-7;8;-8;14;-14;28;-28;56;-56\right\}\\n>-7\end{matrix}\right.\)
\(\Leftrightarrow n\in\left\{-6;-5;-3;0;1;7;21;49\right\}\)
\(C=n^3-n^2+n-1=n^2\left(n-1\right)+\left(n-1\right)=\left(n-1\right)\left(n^2+1\right)\)
Ta có C là số nguyên tố nên C có ước là 1
TH1: n-1=1 => n=2 => C=5 (là số nguyên tố)
TH2: n2+1= 1 => n=0 => C= -1 (không là số nguyên tố)
Vậy với n=2 thì C là số nguyên tố
Có C = \(\left(n-1\right)\left(n^2+1\right)\)
Do C nguyên tố nên hoặc (n-1)=1 hoặc (n2+1)=1
TH1: n-1=1=>n=2 => C = 5 ( chọn )
TH2: n^2+1=1 => n=0 => C = -1 (loại)
Vậy n=2