\(⋮\)( n + 1 )

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2018

\(3n+5⋮n+1\)

\(3n+3+2⋮n+1\)

\(3\left(n+1\right)+2⋮n+1\)

Vì \(3\left(n+1\right)⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\inƯ\left(2\right)=\left\{1;2;-1;-2\right\}\)

\(\Rightarrow n\in\left\{0;1;-2;-3\right\}\)

Vậy.........

18 tháng 12 2018

(3n+5):(n+1)

=>[3x(n+1)+2] :(n+1)

=>2:(n+1)

 
n+12
n+121
n10
  
  
  
8 tháng 12 2019

a)Ta có: n+4 chia hết cho n

     Mà n chia hết cho n

=> 4 chia hết cho n

=> n thuộc Ư(4)

=> n thuộc {1;2;4;-1;-2;-4} (nếu bạn chưa học số âm thì bỏ 3 số cuối đi nha)

Vậy n thuộc {1;2;4;-1;-2;-4} (nếu bạn chưa học số âm thì bỏ 3 số cuối đi nha).

8 tháng 12 2019

b)Ta có: n+5 chia hết cho n+1

=> (n+1) +4 chia hết cho n+1

Mà n+1 chia hết cho n+1

=> 4 chia hết cho n+1

=> n+1 thuộc Ư(4)

=> n+1 thuộc {1;2;4;-1;-2;-4} (nếu bạn chưa học số âm thì bỏ 3 số cuối)

=> n thuộc {0;1;3;-2;-3;-5} (nếu bạn chưa học số âm thì bỏ 3 số cuối)

                 Vậy n thuộc {0;1;3;-2;-3;-5} (nếu bạn chưa học số âm thì bỏ 3 số cuối)

8 tháng 10 2017

mk chưa học đến

11 tháng 11 2018

\(\frac{16}{3n+1}\in N\)

\(\Rightarrow16⋮3n+1\Rightarrow U\left(16\right):3\left(du1\right)\)

\(\Rightarrow3n+1\in\left\{1;4;16\right\}\)

\(\Rightarrow n\in\left\{0;1;5\right\}\)

27 tháng 2 2017

Để \(\frac{n+6}{15}\) là số tự nhiên <=> n + 6 ⋮ 15 => n + 6 = 15k => n = 15k - 6 ( k thuộc N ) (1)

Ta có : \(\frac{3n-2}{n+1}=\frac{3n+3-5}{n+1}=\frac{3\left(n+1\right)-5}{n+1}=3-\frac{5}{n+1}\)

Để \(3-\frac{5}{n+1}\)là số tự nhiên <=> \(\frac{5}{n+1}\)là số tự nhiên

=> n + 1 là ước của 5 => Ư(5) = { - 5; - 1; 1; 5 }

=> n + 1 = { - 5; - 1; 1; 5 }

=> n = { - 6; - 2; 0; 4 }

Mà theo (1) , n phải có dạng 15k - 6 => n = - 6

Mà theo đề bài n là số tự nhiên nên n không tồn tại

25 tháng 2 2020

a) 3n + 5 \(⋮\)2n

\(\Leftrightarrow\)n + 5 \(⋮\)2n

\(\Leftrightarrow\)2(n + 5) \(⋮\)2n

\(\Leftrightarrow\)2n + 10 \(⋮\)2n

\(\Leftrightarrow\)10 \(⋮\)2n

\(\Leftrightarrow\)2n \(\in\)Ư(10) = {-1; 1; -2; 2; -5; 5; -10; 10}

\(\Leftrightarrow\)\(\in\){1; 5}

b) 2n + 7 \(⋮\)3n + 1

\(\Leftrightarrow\)3( 2n + 7)\(⋮\)3n + 1

\(\Leftrightarrow\)6n + 21\(⋮\)3n + 1

\(\Leftrightarrow\)2(3n + 1) + 19 \(⋮\)3n + 1

\(\Leftrightarrow\)19 \(⋮\)3n +1

\(\Leftrightarrow\)3n + 1 \(\in\)Ư(19) = {-1; 1; -19; 19}

Tương tự với các câu còn lại 

4 tháng 7 2019

Ta có : vì \(n\inℕ\)=> \(n+1\inℕ\)

Để \(\frac{3n+1}{n+1}\inℕ\)

=> \(3n+1⋮n+1\)

=> \(3n+3-2⋮n+1\)

=> \(3.\left(n+1\right)-2⋮n+1\)

Ta có : Vì \(3.\left(n+1\right)⋮n+1\)

=> \(-2⋮n+1\)

=> \(n+1\inƯ\left(-2\right)\)

=> \(n+1\in\left\{1;2\right\}\)

Lập bảng xét các trường hợp

\(n+1\)\(1\)\(2\)
\(n\)\(0\)\(1\)

Vậy \(\frac{3n+1}{n+1}\inℕ\Leftrightarrow n\in\left\{0;1\right\}\)

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên