K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Tìm n thuộc Z, biết n+2 chia hết cho n-1 - Nguyễn Thủy Tiên

11 tháng 8 2017

a) Ta có :

\(n+5⋮n+2\)

\(n+2⋮n+2\)

\(\Leftrightarrow3⋮n+2\)

\(n\in N\Leftrightarrow n+2\in N;n+2\inƯ\left(3\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+2=1\Leftrightarrow n=-1\left(loại\right)\\n+1=3\Leftrightarrow n=2\left(tm\right)\end{matrix}\right.\)

Vậy ....

11 tháng 8 2017

b) Ta có :

\(4n+9⋮n+1\)

\(n+1⋮n+1\)

\(\Leftrightarrow\left\{{}\begin{matrix}4n+9⋮n+1\\4n+4⋮n+1\end{matrix}\right.\)

\(\Leftrightarrow5⋮n+1\)

\(n\in N\Leftrightarrow n+1\in N;n+1\inƯ\left(5\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}n+1=1\Leftrightarrow n=0\\n+1=5\Leftrightarrow n=4\end{matrix}\right.\)

Vậy ....

13 tháng 4 2024

Bài 1

n + 2 ⋮ n + 1

n + 1 + 1 ⋮ n + 1

            1 ⋮ n + 1

n + 1 \(\in\) Ư(1) = {-1; 1}

\(\in\) {-2; 0}

Vì n \(\in\) N nên n = 0

Vậy n = 0

 

13 tháng 4 2024

Bài 2:

2n + 7  ⋮ n + 1

2(n + 1) + 5 ⋮ n + 1 

                5 ⋮ n + 1

         n + 1  \(\in\) Ư(5) = {-5; -1; 1; 5}

        n \(\in\) {-6; -2; 0; 4}

Vì n \(\in\) N nên n \(\in\) {0; 4}

Vậy n \(\in\) {0; 4}

16 tháng 11 2016

\(4n-5⋮2n-1\)

\(\Leftrightarrow4n-2-3⋮2n-1\)

\(\Leftrightarrow2\left(2n-1\right)-3⋮2n-1\)

\(\Leftrightarrow-3⋮2n-1\)

\(\Leftrightarrow2n-1\in\text{Ư}\left(-3\right)=\left\{-3;-1;1;3\right\}\)

\(\Leftrightarrow2n\in\left\{-2;0;2;4\right\}\)

\(\Leftrightarrow n\in\left\{-1;0;1;2\right\}\)

\(n\in N\)

\(\Rightarrow n\in\left\{0;1;2\right\}\)

\(6n+9⋮3n+1\)

\(\Leftrightarrow6n+2+7⋮3n+1\)

\(\Leftrightarrow2\left(3n+1\right)+7⋮3n+1\)

\(\Leftrightarrow7⋮3n+1\)

\(\Leftrightarrow3n+1\in\text{Ư}\left(7\right)=\left\{-7;-1;1;7\right\}\)

\(\Leftrightarrow3n\in\left\{-8;-2;0;6\right\}\)

\(\Leftrightarrow n\in\left\{-\frac{8}{3};-\frac{2}{3};0;2\right\}\)

\(n\in N\)

=> \(n\in\left\{0;2\right\}\)

22 tháng 12 2020

a, \(n+3⋮n-1\)

\(n-1+4⋮n-1\)

\(4⋮n-1\)hay \(n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)

n - 1124
n235

\(4n+3⋮2n+1\Leftrightarrow2\left(2n+1\right)+1⋮2n+1\Leftrightarrow1⋮2n+1\)

Lập bảng tương tự 

6 tháng 12 2017

a) Ta có:

\(5⋮n+1\)

\(\Rightarrow n+1\in U\left(5\right)=\left\{1;5\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=5\Rightarrow n=4\end{matrix}\right.\)

Vậy \(n\in\left\{0;4\right\}\)

b) Ta có:

\(15⋮n+1\)

\(\Rightarrow n+1\in U\left(15\right)=\left\{1;3;5;15\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=3\Rightarrow n=2\\n+1=5\Rightarrow n=4\\n+1=15\Rightarrow n=14\end{matrix}\right.\)

Vậy \(n\in\left\{0;2;4;14\right\}\)

c) Ta có:

\(n+3⋮n+1\)

\(\Rightarrow\left(n+1\right)+2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\in U\left(2\right)=\left\{1;2\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow\left\{{}\begin{matrix}n+1=1\Rightarrow n=0\\n+1=2\Rightarrow n=1\end{matrix}\right.\)

Vậy \(n\in\left\{0;1\right\}\)

d) Ta có:

\(4n+3⋮2n+1\)

\(\Rightarrow\left(4n+2\right)+1⋮2n+1\)

\(\Rightarrow2\left(2n+1\right)+1⋮2n+1\)

\(\Rightarrow1⋮2n+1\)

\(\Rightarrow2n+1\in U\left(1\right)=\left\{1\right\}\) ( Vì \(n\in N\) )

\(\Rightarrow2n+1=1\)

\(\Rightarrow n=0\)

Vậy \(n=0\)

3 tháng 2 2019

Toi quen mat cach  lam roi xin loi nhe