Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2+4+6+....+2n=210\)
\(\Rightarrow2\left(1+2+3+.....+n\right)=210\)
\(\Rightarrow1+2+3+...+n=210:2\)
\(\Rightarrow1+2+3+...+n=105\)
\(=\frac{n\left(n+1\right)}{2}=105\)
\(=n\left(n+1\right)=210\)
Vì \(n\left(n+1\right)\) là hai số tự nhiên liên tiếp mà \(210=14.15\)
nên \(n=14\)
1+3+5+...+2n-1=225
\(=\frac{\left(2n-1+1\right)n}{2}=225\)
\(\Rightarrow\frac{2nn}{2}=225\)
\(\frac{2n^2}{2}=225\)
\(=n^2=225\)
Ta có : \(n^2=225=3^2.5^2=15^2\)
\(\Rightarrow n=15\)
210 = 2 + 4 + 6 + ...+ 2n
= n(2 + 2n)/2
= n(1 + n)
= n^2 + n
<=> n^2 + n - 210 = 0
=> n = -15 (loại); n = 14
225 = 1 +3 + 5 +...+ (2n + 1)
= (n + 1)(2n + 1 + 1)/2
= (n + 1)^2
<=> n + 1 = 15
<=> n = 14
2+4+6+8+...+2n = 210
2.(1+2+3+4+...+n) = 210
1+2+3+4+...+n = 210:2
1+2+3+4+...+n = 105
=> n.(n+1):2 = 105
n.(n+1) = 105.2
n.(n+1) = 210
Vì 14.15 = 210 => n = 14
2+4+6+...+2n = 210
((2n-2):2+1). (2n+2):2=210
n.(n+1)= 210
mà 210 = 15.14
=> n+1=15=> n=14
n+1=14=> n= 13(L)
vậy n= 14
2 + 4 + 6 + ....+ 2(n-1) + 2n = 210
⇔ 2(1+2+3+4+.....+n-1+n) = 210
⇔ 1+ 2 + 3 + .....+ n = 210 : 2
⇔ 1 + 2 + 3 +.....+n = 105
⇔(1+n)n: 2 = 105
⇔(1+n)n = 210
(1+n)n = 15.14
n = 14