Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nhận thấy x = 1 không là nghiệm của phương trình nên ta xét \(x\ge2\)
Do đó , y là số lẻ
Mà 12x , y2 \(\equiv1\left(mod8\right)\)
Suy ra 5x \(\equiv1\left(mod8\right)\)
=> x chẵn
Đặt x = 2k (k > 0)
=> 52k = (y - 12k)(y + 12k)
Mặt khác , 5 là số nguyên tố nên tồn tại một số m,m < k thõa : y + 12k = 52k - m
và y - 12k = 5m
=> 2.12k = 5m(52k - 2m - 1)
Nhận thấy : 2 và 12 là hai số nguyên tố cùng nhau với 5
=> 52k + 122k = (12k + 1)2
Mà 2.12k = 5m => m = 0 và y = 12k + 1
=> 2.12k = 25k - 1
Tìm từng giá trị của k thấy k = 1 thõa mãn phương trình
Vậy x = 2 , y = 13
b) Dùng nhị thức Newton , ta khai triển hai hạng tử được
\(\left(2+\sqrt{3}\right)^{2016}+\left(2-\sqrt{3}\right)^{2016}=2^{2016}+2^{2016}+3^{1008}+3^{1008}=2\left(2^{2016}+3^{1008}\right)⋮2\)
Vậy ......
Ta làm bài tổng quát như sau:
Cho \(u_n=\left(2+\sqrt{3}\right)^n+\left(2-\sqrt{3}\right)^n\) chứng minh \(u_n\)là số tự nhiên chẵn với mọi n là số nguyên dương. (1)
Đặt \(\hept{\begin{cases}2+\sqrt{3}=x\\2-\sqrt{3}=y\end{cases}}\)
\(\Rightarrow u_n=x^n+y^n\)
\(\Rightarrow\hept{\begin{cases}x+y=4\\xy=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}u_1=4\\u_2=14\end{cases}}\)
Xét \(n=1;2\) thì (1) đúng.
Giả sử (1) đúng đến \(n=k\) .
Ta chứng minh (1) đúng với \(n=k+1\)
Ta có:
\(\Rightarrow u_{k+1}=x^{k+1}+y^{k+1}=\left(x+y\right)\left(x^k+y^k\right)-xy\left(x^{k-1}+y^{k-1}\right)=4u_k-u_{k-1}\) là số nguyên dương chẵn.
Vậy theo quy nạp ta có (1) đúng.
Áp dụng vào bài toán ta có điều phải chứng minh.
Bài 1 : \(A=\frac{2016}{x^2-2x+2017}\) đạt GTLN khi \(x^2-2x+2017\) đạt GTNN .
\(x^2-2x+2017=x^2-2x+1+2016=\left(x-1\right)^2+2016\Rightarrow GTNN\) của \(x^2-2x+2017\) là \(2016\)
\(\Rightarrow GTLN\) của \(A\) là : \(\frac{2016}{2016}=1\)
Bài 2 :
a ) Đặt \(A=\frac{2}{6x-9x^2-21}.A\) đạt \(GTNN\) Khi \(\frac{1}{A}\) đạt \(GTLN\).
Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)
Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)
\(\Rightarrow Min_A=-1\Rightarrow x=\frac{1}{3}\)
b ) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)
Ta có : \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)
Đặt \(y=x^2-7x+8\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)
\(Min_B=-4\) khi và chỉ khi \(x^2-7x+8=0\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{array}\right.\)
đặt \(a=5+2\sqrt{6}\).ta sẽ chứng minh với dạng tổng quát \(\left[a^n\right]\)là 1 số tự nhiên lẻ.
ta có: \(a^n=\left(5+2\sqrt{6}\right)^n=x+y\sqrt{6}\)(x,y là các số tự nhiên) (*)
đặt \(b=5-2\sqrt{6}\Rightarrow b^n=x-y\sqrt{6}\)
\(\Rightarrow a^n+b^n=2x\)
mà \(0< b=5-2\sqrt{6}< 1\)
\(\Rightarrow0< b^n< 1\)
\(\Rightarrow2x-1< a^n=2x-b^n< 2x\)
nên \(\left[a^n\right]=2x-1\)lẻ vì x nguyên.
p/s:(*) : thử \(\left(5+2\sqrt{6}\right)^2,\left(5+2\sqrt{6}\right)^3\)đều có dạng \(A+B\sqrt{6}\)
a Để đây là hàm số bậc nhất thì |k-3|<>1
hay \(k\notin\left\{4;2\right\}\)
b: Để đây là hàm số bậc nhất thì k^2-4=0 và k-2<>0
=>k=-2
c: Để đây là hàm số bậc nhất thì \(\dfrac{\sqrt{3-k}}{k+2}< >0\)
=>k<=3 và k<>-2
d: Để đây là hàm số bậc nhất thì k>0; k<>4
O I K A E B H F C D G 1 1 2 2
a)
IO = OB – IB => (I) tiếp xúc trong với (O).
OK = OC – KC => (K) tiếp xúc trong với (O)
IK = OH + KH => (I) tiếp xúc ngoài với (K)
b)
Tứ giác AEHF có \(\widehat{A}=\widehat{E}=\widehat{F}=90^o\) nên là hình chứ nhật
c)
c) \(\Delta AHB\) vuông nên AE.AB = AH2
\(\Delta AHC\)vuông nên AF . AC = AH2
Suy ra AE . AB = AF . AC
d) Gọi G là giao điểm của AH và EF
Tứ giác AEHF là hình chữ nhật => AH = EF
Ta có : GE = GH => \(\Delta GEH\)\(\Rightarrow\widehat{E_1}=\widehat{H_1}\)
Ta lại có \(\Delta IHE\)cân \(\Rightarrow\widehat{E_2}=\widehat{H_2}\)
\(\Rightarrow\widehat{E_1}+\widehat{E_2}=\widehat{H_1}+\widehat{H_2}=90^o\)
Do đó EF là tiếp tuyến của đường tròn (I)
Tương tự, EF là tiếp tuyến của đường tròn (K)
e) - Cách 1:
Ta có: \(EF=AH\le OA\) ( OA có độ dài không đổi )
Do đó EF lớn nhất khi AH = OA
<=> H trùng O hay dây AD đi qua O.
Vậy khi dây AD vuông góc với BC tại O thì EF có độ dài lớn nhất.
\(k_{max}=19.2017=38323\)