\(\frac{5}{x+1}\) là số nguyên (x khác -1) 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

x= -6;-2;0;4 

Xko thể là -1 được đâu nhé

hi hi đồ ngốc 

9 tháng 4 2017

x={-2;0;4}

15 tháng 3 2018

\(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\)

\(\Leftrightarrow\frac{5.3}{3x}-\frac{y}{3}=\frac{1}{6}\)

\(\Leftrightarrow\frac{5.3}{3x}=\frac{1}{6}+\frac{y}{3}=\frac{1}{6}+\frac{2y}{6}\)

\(\Leftrightarrow\frac{15}{3x}=\frac{1+2y}{6}\)

\(\Rightarrow\hept{\begin{cases}15=1+2y\\3x=6\end{cases}\Rightarrow\hept{\begin{cases}15=1+2y\\x=2\end{cases}}}\)

Thế x = 2 vào,ta có: 

\(\frac{15}{3.2}=\frac{15}{6}=\frac{1.2y}{6}\)

\(\Leftrightarrow\frac{15}{6}=\frac{2y}{6}\Rightarrow y=15:2=7,5=8\)

2 tháng 8 2020

\(\frac{x+1}{2}-\frac{3}{5}=\frac{1}{2y}\)

\(\Rightarrow\frac{5x+5}{10}-\frac{6}{10}=\frac{1}{2y}\)

\(\Rightarrow\frac{5x-1}{10}=\frac{1}{2y}\)

\(\Leftrightarrow\left(5x-1\right)2y=10\)

Lập bảng xong xét các trường hợp là ra

2 tháng 8 2020

Ta có : \(\frac{x+1}{2}-\frac{3}{5}=\frac{1}{2y}\)

=> \(\frac{x+1}{2}-\frac{1}{2y}=\frac{3}{5}\)

=> \(\frac{xy+y-1}{2y}=\frac{3}{5}\)

=> 5(xy + y - 1) = 6y

=> 5xy + 5y - 5 = 6y

=> 5xy + 5y - 6y = 5

=> 5xy - y = 5

=> y(5x - 1) = 5

Vì x ; y là số nguyên

=> Ta có 5 = 1.5 = (-1).(-5)

Lập bảng xét các trường hợp

y15-1-5
5x - 151-5-1
x1,2(loại)0,4(loại)-0,8(loại)0(tm)

Vậy y = - 5 ; x = 0

16 tháng 2 2019

Để một phân số A nào đó có giá trị một số nguyên thì tử số phải chia hết cho mẫu số.

Giải VD câu a nè:

Để phân số 4/x có giá trị là mốt ố nguyên thì 4 chia hết cho x

=> x thuộc Ư(4)={1;-1;2;-2;4;-4}

Vậy.........

Chắc cậu đủ thông minh để làm những câu còn lại !

14 tháng 8 2019

1) a) Để x > 0

=> \(2a-5< 0\)

\(\Rightarrow2a< 5\)

\(\Rightarrow a< 2,5\)

\(\text{Vậy }x>0\Leftrightarrow a< 2,5\)

b) Để x < 0

\(\Rightarrow2a-5>0\)

\(\Rightarrow2a>5\)

\(\Rightarrow a>2,5\)

\(\text{Vậy }x< 0\Leftrightarrow a>2,5\)

c) Để x = 0

\(\Rightarrow2a-5=0\)

\(\Rightarrow2a=5\)

\(\Rightarrow a=2,5\)

\(\text{Vậy }x=0\Leftrightarrow a=2,5\)

2) \(\text{Vì }a\inℤ\Rightarrow3a-5\inℤ\)

\(\text{mà }x\inℤ\Leftrightarrow3a-5⋮4\)

\(\Rightarrow3a-5\in B\left(4\right)\)

\(\Rightarrow3a-5\in\left\{0;4;8;...\right\}\)

\(\Rightarrow3a\in\left\{5;9;13;....\right\}\)

\(\Rightarrow a\in\left\{\frac{5}{3};3;\frac{13}{3};6;....\right\}\)

\(\text{Mà }a\inℤ\Rightarrow a\in\left\{3;6;9;...\right\}\text{thì }x\inℤ\)

1 tháng 5 2020

1) \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}=\frac{1}{a+1}+\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a+1}+\frac{1}{a}-\frac{1}{a+1}=\frac{1}{a}\)

Vậy: \(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)

\(\frac{1}{5}=\frac{1}{6}+\frac{1}{5.6}=\frac{1}{7}+\frac{1}{7.6}+\frac{1}{5.6}=\frac{1}{7}+\frac{1}{42}+\frac{1}{30}\)

2) \(A=\frac{n+3}{n-2}=1+\frac{5}{n-2}\)

A nhận giá trị nguyên <=> \(\frac{5}{n-2}\) nhận giá trị nguyên 

<=> \(n-2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

<=> \(n=\left\{-3;1;3;7\right\}\)

1 tháng 5 2020

Mình học dốt nên chỉ làm được bài 2 thôi :)

\(A=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)

Để A nhận giá trị nguyên => \(\frac{5}{n-2}\)nhận giá trị nguyên

=> \(5⋮n-2\)

=> \(n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n-21-15-5
n317-3
27 tháng 4 2018

A = \(\frac{n+2}{n-5}\)\(\frac{n-5+7}{n-5}\)\(1+\frac{7}{n-5}\)

Để \(1+\frac{7}{n-5}\)là số nguyên \(\Leftrightarrow\frac{7}{n-5}\)là số nguyên.

=> n - 5 \(\in\)Ư(7) = {-7; -1; 1; 7}

=> n \(\in\){-2; 4; 6; 12}

Vậy n \(\in\){-2; 4; 6; 12}

~~~
#Sunrise

27 tháng 4 2018

\(\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}=1+\frac{7}{n-5}\)

Để A là số nguyên thì n-5 phải thuộc Ư(7)={-7;-1;1;7}

Nếu n-5=-7 thì n=-2

Nếu n-5=-1 thì n=4

Nếu n-5=1 thì n=6

Nếu n-5=7 thì n=12

3 tháng 5 2019

7/x - y/1

=> xy = 7

=> x;y thuộc Ư(7) mà x;y nguyên 

=> x;y thuộc {1; 7; -1; -7}

xét bảng

3 tháng 5 2019

tại sao \(\frac{7}{y}-\frac{y}{1}\)

16 tháng 9 2018

1 Giải :

\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1

Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)

Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}

Lập bảng :

x - 1 1 -1 2 -2 4 -4 8 -8
   x 2 0 3 -1 5 -3 9 -7

Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên

16 tháng 9 2018

Đặt \(A=\frac{3x+7}{x-1}\)

Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)

Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\) 

Ta có bảng sau:

\(x-1\)\(1\)\(-1\)\(2\)\(-2\)\(5\)\(-5\)\(10\)\(-10\)
\(x\)\(2\)\(0\)\(3\)\(-1\)\(6\)\(-4\)\(11\)\(-9\)

Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)