Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(t=\frac{x+7}{x-3}=\frac{x-3+10}{x-3}=\frac{x-3}{x-3}+\frac{10}{x-3}=1+\frac{10}{x-3}\)
Để t là số nguyên khi \(\frac{10}{x-3}\)là số nguyên
\(\Rightarrow\left(x-3\right)\inƯ\left(10\right)\)\(=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
\(x-3\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-5\) | \(5\) | \(-10\) | \(10\) |
\(x\) | \(2\) | \(4\) | \(1\) | \(5\) | \(-2\) | \(8\) | \(-7\) | \(13\) |
Vậy \(x\in\left\{-7;-2;1;2;4;5;8;13\right\}\)để t là số nguyên
Để \(\frac{-8}{x+8}\)là số hữu tỉ dương
\(\Leftrightarrow x+8< 0\)
\(\Leftrightarrow x< -8\)
Vậy x < -8
a) Ta có A = \(\frac{x-10}{x-5}=\frac{x-5-5}{x-5}=1-\frac{5}{x-5}\)
Vì \(1\inℤ\Rightarrow\frac{-5}{x-5}\inℤ\)
=> \(-5⋮x-5\)
=> x - 5 \(\in\)Ư(-5)
=> \(x-5\in\left\{1;5;-1;-5\right\}\)
=> \(x\in\left\{6;11;4;0\right\}\)
Vậy khi \(x\in\left\{6;11;4;0\right\}\)thì A là số hữu tỉ
b) Ta có B = \(\frac{3x-2}{x-5}=\frac{3x-15+13}{x-5}=\frac{3\left(x-5\right)+13}{x-5}=3+\frac{13}{x-5}\)
Vì \(3\inℤ\Rightarrow\frac{13}{x-5}\inℤ\)
=> \(13⋮x-5\)
=> \(x-5\inƯ\left(13\right)\Rightarrow x-5\in\left\{1;13;-1;-13\right\}\)
=> \(x\in\left\{6;18;4;-8\right\}\)
Vậy khi \(x\in\left\{6;18;4;-8\right\}\)thì B là số hữu tỉ
c) Ta có C = \(\frac{x-3}{2x}\)
=> 2C = \(\frac{2x-6}{2x}=1-\frac{6}{2x}=1-\frac{3}{x}\)
Vì \(1\inℤ\Rightarrow\frac{3}{x}\inℤ\Rightarrow3⋮x\Rightarrow x\inƯ\left(3\right)\Rightarrow x\in\left\{1;3;-1;-3\right\}\)
Vậy khi \(x\in\left\{1;3;-1;-3\right\}\)thì C là số hữu tỉ
a, \(\dfrac{x}{7}\) \(\in\) Q ⇔ \(x\in z\)
b, \(\dfrac{5}{x}\) \(\in\) Q ⇔ \(x\) \(\ne\) 0; \(x\) \(\in\) Z
c, - \(\dfrac{5}{2x}\) \(\in\) Q ⇔ \(x\) \(\ne\) 0; \(x\in Z\)
a) Tập hợp số nguyên chia hết cho 7 là
\(\Rightarrow x\in A=\left\{\pm7;\pm14;\pm21;...\right\}\)
\(\Rightarrow A=\left\{x\inℕ|x=\pm7k;k\inℤ\right\}\)
Vậy để \(\dfrac{x}{7}\in Q\)
\(\Rightarrow x\in A\)
b) \(\dfrac{5}{x}\inℚ\)
\(\Rightarrow x\in\left\{\pm1;\pm5\right\}\)
c) \(-\dfrac{5}{2x}\inℚ\)
\(\Rightarrow2x\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow x\in\left\{\pm\dfrac{1}{2};\pm\dfrac{5}{2}\right\}\)
\(\Rightarrow x\in\varnothing\)
\(x\) là số hữu tỉ dương \(\Leftrightarrow\frac{-101}{a+7}\) là số hữu tỉ dương
\(\Leftrightarrow\left(-101\right)⋮a+7\)
\(\Rightarrow\left(a+7\right)\inƯ\left(101\right)\)
\(\Rightarrow\left(a+7\right)\in\left\{1,-1,101,-101\right\}\)
\(\Rightarrow a\in\left\{-108,-8,-6,94\right\}\)
Mà a là số hữu tỉ dương
Vậy A=94
T.i.c.k cho mk,mk t.i.c.k lại
Ai t.i.c.k cho mk may mắn cả tuần
Để x là số nguyên thì 3a - 2 ϵ Ư(2) = {1; -1; 2; -2}.
Lập bảng
3a - 2 | 1 | -1 | 2 | -2 |
a | 1 | \(\dfrac{1}{3}\) (loại) | \(\dfrac{4}{3}\) (loại) | 0 |
a) Để x là số nguyên dương thì 3a - 2 phải là số nguyên dương. Vậy để x là số nguyên dương thì a = 1.
b) Để x là số nguyên âm thì 3a - 2 phải là số nguyên âm. Vậy để x là số nguyên âm thì a = 0.
a) 2ˣ + 2ˣ⁺³ = 72
2ˣ.(1 + 2³) = 72
2ˣ.9 = 72
2ˣ = 72 : 9
2ˣ = 8
2ˣ = 2³
x = 3
b) Để số đã cho là số nguyên thì (x - 2) ⋮ (x + 1)
Ta có:
x - 2 = x + 1 - 3
Để (x - 2) ⋮ (x + 1) thì 3 ⋮ (x + 1)
⇒ x + 1 ∈ Ư(3) = {-3; -1; 1; 3}
⇒ x ∈ {-4; -2; 0; 2}
Vậy x ∈ {-4; -2; 0; 2} thì số đã cho là số nguyên
c) P = |2x + 7| + 2/5
Ta có:
|2x + 7| ≥ 0 với mọi x ∈ R
|2x + 7| + 2/5 ≥ 2/5 với mọi x ∈ R
Vậy GTNN của P là 2/5 khi x = -7/2