Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, (n+1)(n+3) là SNT <=> 1 ts = 1; ts còn lại là SNT.
TH1: n+1=1 => n=0 => n+3=3 (t/m)
TH2: n+3=1 => n=-2 => n+1=-1 (không t/m)
=> n=0.
b, A không tối giản => ƯCLN(n+3;n-5) >1
=> ƯCLN(8;n-5) >1 => n-5 chẵn => n lẻ.
\(------huongdan-----\)
\(Taco:\)
\(\left(3n-2n\right)⋮n+1\Leftrightarrow n⋮n+1\Leftrightarrow\left(n+1\right)-n⋮n+1\Leftrightarrow1⋮n+1\)
\(\Leftrightarrow n+1\in\left\{-1;1\right\}\Leftrightarrow n\in\left\{-2;0\right\}\)
\(b,2n-4⋮n+2\Leftrightarrow2n+4-2n+4⋮2n+4\Leftrightarrow8⋮2n+4\)
dễ thấy: 2n+4 chẵn => 2n+4 là ước chẵn của 8
\(\Rightarrow2n+4\in\left\{2;4;8;-2;-4;-8\right\}\Rightarrow2n\in\left\{-2;0;4;-6;-8;-12\right\}\)
\(\Rightarrow n\in\left\{-1;0;2;-3;-4;-6\right\}\)
a) Điều kiện xác định: n khác 4
\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=\frac{n-4}{n-4}+\frac{4}{n-4}\)\(=1+\frac{4}{n-4}\)
Để B nguyên thì \(\frac{4}{n-4}\in Z\)\(\Rightarrow n-4\in U\left(4\right)=\left(1;-1;2;-2;4;-4\right)\)
\(\Rightarrow n\in\left\{5;3;6;2;8;0\right\}\)(thỏa mãn n khác 4)
Vậy .............
b) \(n\in\left\{-2;-4\right\}\)
c) \(n\in\left\{-2;-1;3;5\right\}\)
d) \(n\in\left\{0;-2;2;-4\right\}\)
e) \(n\in\left\{0;2;-6;8\right\}\)
(Bài này có 1 bạn hỏi rồi bạn nhé!!!)
Bài 2: a) Để A là phân số thì (n2 +1)(n-7) khác 0 <=> n khác 7
b) Với n = 7 thì mẫu số bằng 0 => phân số không tồn tại
c) Với n = 0 thì \(\frac{0+1}{\left(0^2+1\right)\left(0-7\right)}=\frac{1}{-7}\left(=\frac{-1}{7}\right)\)
Với n = 1 thì \(\frac{1+1}{\left(1^2+1\right)\left(1-7\right)}=\frac{2}{2\times\left(-6\right)}=\frac{-1}{6}\)
Với n = -2 thì: \(\frac{-2+1}{\left[\left(-2\right)^2+1\right]\left(-2-7\right)}=\frac{-1}{-45}=\frac{1}{45}\)
Ta có :
\(B=\frac{n}{n-4}=\frac{n-4+4}{n-4}=1+\frac{4}{n-4}\)
Để \(B\in Z\) thì \(\frac{4}{n-4}\in Z\)
\(\Rightarrow n-4\in\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow n\in\left\{0;2;3;5;6;8\right\}\)
a) Vì 3\(⋮\)n
=> n\(\in\)Ư(3)={ 1; 3 }
Vậy, n=1 hoặc n=3
1) a là số nguyên tố nên a chỉ có 2 ước là 1 và chính nó
Vì a = (n - 2).(n2 + n + 1) nên a có 2 ước là n - 2 và n2 + n + 1
Vậy đê a là số nguyên tố thì n - 2 = 1 hoặc n2 + n + 1 = 1
+) n - 2 = 1 => n = 3 => a = 1.(32 + 3 + 1) = 13 là số nguyên tố
+) n2 + n + 1 = 1 => n2 + n = 0 => n(n + 1) = 0 => n = 0 (Vì n là số tự nhiên nên n + 1 > 0)
=> a = (0 - 2).1 = -2 Loại
Vậy n = 3
2) b = n.(n2 + 1) . tương tự câu a
=> n = 1 hoặc n2 + 1 = 1
+) Nếu n = 1 thì a = 2 là số nguyên tố
+) Nếu n2 + 1 = 1 => n2 = 0 => n = 0 => a = 0 (Loại)
Vậy n = 1
1) n>2
=>n -2 =1 => n =3
32 +3 +1 =13 là số nguyên tố (TM)
Vậy n =3
2) n3 +n = n(n2+1) => n =1
khi đó 12 +1 =2 là số nguyên tố (TM)
Vậy n =1