Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(n+4=n-1+\)\(5\)
Ta thấy : \(\left(n-1\right)⋮\left(n-1\right)\)
Nên \(\left(n+4\right)⋮\left(n-1\right)\Leftrightarrow5⋮\)\(\left(n-1\right)\)
\(\Leftrightarrow\left(n-1\right)\inƯ\left(5\right)=\)\((1;5)\)
N - 1 | 1 | 5 |
N | 2 | 6 |
a) \(n+4⋮n-1\Rightarrow\left(n-1\right)+5⋮n-1\Rightarrow5⋮n-1\Rightarrow n-1\inƯ\left(5\right)\)
\(\Rightarrow n-1\in\left\{1;5;-1;-5\right\}\Rightarrow n\in\left\{2;6;0;-4\right\}\)
b) \(n^2+2n-3=\left(n^2+n\right)+n-3=n\left(n+1\right)+n-3\)
vì \(n\left(n-1\right)⋮n-1\)\(\Rightarrow n-3⋮n+1\Rightarrow\left(n+1\right)-4⋮n-1\Rightarrow4⋮n-1\Rightarrow n-1\inƯ\left(4\right)\)
\(\Rightarrow n-1\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow n\in\left\{2;3;5;0;-1;-3\right\}\)
a, (n+1)(n+3) là SNT <=> 1 ts = 1; ts còn lại là SNT.
TH1: n+1=1 => n=0 => n+3=3 (t/m)
TH2: n+3=1 => n=-2 => n+1=-1 (không t/m)
=> n=0.
b, A không tối giản => ƯCLN(n+3;n-5) >1
=> ƯCLN(8;n-5) >1 => n-5 chẵn => n lẻ.
2/ Ta có : 4x - 3 \(⋮\) x - 2
<=> 4x - 8 + 5 \(⋮\) x - 2
<=> 4(x - 2) + 5 \(⋮\) x - 2
<=> 5 \(⋮\)x - 2
=> x - 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
x - 2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
Để (n-2)(n^2 + n - 1) là số nguyên tố => (n-2) hoặc n^2 + n - 1 phải = 1
Mà n^2 + n - 1 = n^2 + 1 +(n-2) > n+2
=> n + 2 = 1 => n = 3
Vì p là tích của hai số ( n - 2 )( n^2 + n - 1 )
=> p là số nguyên tố thì một trong hai số tren phải = 1 ( nếu cả hai tích số đều lớn hơn 1 => p là hợp số , trái vs đầu bài )
ta luôn có : n^2 + n - 1 = n^2 + 1 + ( n- 2 ) > ( n - 2 )
vậy => n - 2 = 1 => n = 3 => p = 11
Chúc bạn hương học giỏi nha <3 <3 <3
Ta có
\(\frac{2n+1}{n-5}=\frac{2\left(n-5\right)+11}{n-5}=2+\frac{11}{n-5}\)
Để 2n+1 chia hết cho n-5 thì 11 phải chia hết cho n-5
Hay n-5 thuộc Ư(11)
n-5 | 1 | 5 | -1 | -5 |
n | 6 | 10 | 4 | 0 |
2
Ta có
\(\frac{n^2+3n-13}{n+3}=\frac{n\left(n+3\right)-13}{n+3}=n-\frac{13}{n+3}\)
Để n^2+3n-13 chia hết cho n+3 thì 13 phải chia hết cho n+3
=>n+3 thuộc Ư(13)
Đến đây tự tìm ra n nha Khuất Tuấn Anh
3
Ta có
\(\frac{n^2+3}{n+1}=\frac{\left(n^2-1\right)+4}{n+1}=\frac{\left(n-1\right)\left(n+1\right)+4}{n+1}=n-1+\frac{4}{n+1}\)
Lập luận như trên =>n+1 thuộc Ư(4)
Tick nha Khuất Tuấn Anh
1) a là số nguyên tố nên a chỉ có 2 ước là 1 và chính nó
Vì a = (n - 2).(n2 + n + 1) nên a có 2 ước là n - 2 và n2 + n + 1
Vậy đê a là số nguyên tố thì n - 2 = 1 hoặc n2 + n + 1 = 1
+) n - 2 = 1 => n = 3 => a = 1.(32 + 3 + 1) = 13 là số nguyên tố
+) n2 + n + 1 = 1 => n2 + n = 0 => n(n + 1) = 0 => n = 0 (Vì n là số tự nhiên nên n + 1 > 0)
=> a = (0 - 2).1 = -2 Loại
Vậy n = 3
2) b = n.(n2 + 1) . tương tự câu a
=> n = 1 hoặc n2 + 1 = 1
+) Nếu n = 1 thì a = 2 là số nguyên tố
+) Nếu n2 + 1 = 1 => n2 = 0 => n = 0 => a = 0 (Loại)
Vậy n = 1
1) n>2
=>n -2 =1 => n =3
32 +3 +1 =13 là số nguyên tố (TM)
Vậy n =3
2) n3 +n = n(n2+1) => n =1
khi đó 12 +1 =2 là số nguyên tố (TM)
Vậy n =1