K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
2 tháng 8 2021

giả sử :

\(\hept{\begin{cases}a^2=n+5\\b^2=n+30\end{cases}\Rightarrow b^2-a^2=25}\) mà rõ ràng a,b là hai số tự nhiên và a<b

nên ta có : \(\left(b-a\right)\left(b+a\right)=5^2\Rightarrow\hept{\begin{cases}b-a=1\\b+a=25\end{cases}\Rightarrow\hept{\begin{cases}a=12\\b=13\end{cases}\Rightarrow}n=139}\)

26 tháng 10 2016

Do n + 3 và n + 120 đều là số chính phương nên

\(\begin{cases}n+3=a^2\\n+120=b^2\end{cases}\) \(\left(a;b\in N;a>1;b>11\right)\)

=> (n + 120) - (n + 3) = a2 - b2

=> a2 - b2 = n + 120 - n - 3

=> (a - b).(a + b) = 117

=> a - b và a + b cùng lẻ mà a - b < a + b; a + b > 12

=> \(\begin{cases}a-b=1\\a+b=117\end{cases}\) hoặc \(\begin{cases}a-b=3\\a+b=39\end{cases}\) hoặc \(\begin{cases}a-b=9\\a+b=13\end{cases}\)

Các cặp giá trị (a;b) tương ứng là: (58;59) ; (18;21) ; (2;11)

Các giá trị n tương ứng là: 3361; 321; 1

Vậy \(n\in\left\{3361;321;1\right\}\)

 

13 tháng 7 2017

=> n+5 và n+30 là 2 số chình phương liền nhau:

Ta có: a2-b2= 25

=> (a-b)(a+b)=25 ; giả sử a=b+1 ( 2 số liên tiếp) thì:

=>(b+1-b)(b+1+b )=25

=>2b=24 => b=12; => a=13

=> a2=169; b2=144

=>n= 144-5=169-30=139;

CHÚC BẠN HỌC TỐT..........

13 tháng 7 2017

Với n+5 và n+30 là số chính phương

\(\left\{{}\begin{matrix}n+5=a^2\\n+30=b^2\end{matrix}\right.\) \(\Rightarrow n+5-n-30=a^2-b^2=\left(a-b\right)\left(a+b\right)=-25\)

Mà -25=-5.5=-1.25=-25.1


Giờ bn lập bảng các gt của a và b là đc

18 tháng 3 2020

Đặt \(\hept{\begin{cases}n+1=a^2\\4n+29=b^2\end{cases}\left(a;b\inℕ\right)\Rightarrow\hept{\begin{cases}4n+4=4a^2\\4n+29=b^2\end{cases}}}\)

=> 4n+29-4n-4=b2-4a2

=> 25=(b-2a)(b+2a)

Vì a,b là số tự nhiên => \(\hept{\begin{cases}b-2a;b+2a\inℤ\\b-2a\le b+2a\end{cases}}\)

\(\Rightarrow\left(b-2a;b+2a\right)\inƯ\left(25\right)=\left\{\left(-25;-1\right);\left(-5;-5\right);\left(1;25\right);\left(5;5\right)\right\}\)

Lấy vế cộng vế ta được

\(2b\in\left\{-26;-10;26;10\right\}\)

\(\Rightarrow b\in\left\{-13;-5;13;5\right\}\)

Mà b là số tư nhiên nên b={13;5}

Với b=13

\(\Rightarrow4n+29=13^3=169\)

=> 4n=140

=> n=35 => n+1=36=62

Với b=5

=> \(4n+29=5^2=25\)

=> 4n=-4

=> n=-1

=> n+1=-1+1=0

Vậy với n={35;-1} thì n+1; 4n+29 là số chính phương

11 tháng 6 2021

a) Đặt A = 20184n + 20194n + 20204n

= (20184)n + (20194)n + (20204)n

= (....6)n + (....1)n + (....0)n

= (...6) + (...1) + (...0) = (....7) 

=> A không là số chính phương

b) Đặt 1995 + n = a2 (1) 

2014 + n = b2 (2)

a;b \(\inℤ\)

=> (2004 + n) - (1995 + n) = b2 - a2

=> b2 - a2 = 9

=> b2 - ab + ab - a2 = 9

=> b(b - a) + a(b - a) = 9

=> (b + a)(b - a) = 9

Lập bảng xét các trường hợp

b - a19-1-93-3
b + a91-9-1-33
a-444-4-33
b55-5-500

Từ a;b tìm được thay vào (1)(2) ta được 

n = -1979 ; n = -2014 ; 

8 tháng 11 2021

so 2 phai ko

24 tháng 5 2022

sai bét

27 tháng 10 2024

Bài 1: Gọi ước chung lớn nhất của n + 1 và 7n + 4 là d

Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}7n+7⋮d\\7n+4⋮d\end{matrix}\right.\) ⇒ 7n+ 7 - 7n - 4 ⋮ d

⇒ (7n - 7n) + (7 - 4) ⋮ d ⇒0 + 3 ⋮ d ⇒ 3 ⋮ d ⇒ d \(\in\) Ư(3) = {1; 3}

Nếu n = 3 thì n + 1 ⋮ 3 ⇒ n = 3k - 1 khi đó hai số sẽ không nguyên tố cùng nhau.

Vậy để hai số nguyên tố cùng nhau thì n \(\ne\) 3k - 1

Kết luận: n \(\ne\) 3k - 1 

 

 

 

16 tháng 8 2016

Do 2n+1 là số chính phương lẻ nên 2n+1 chia 8 dư 11,vậy n là số chẵn.
Vì 3n+1 là số chính phương lẻ nên 3n+1 chia 88 dư 11
3n8
n8(1)
Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
n5(2)
Từ (1) và (2)n40
Vậy n=40k thì 3n + 1 và 2n + 1 đều là số chính phương