Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có : \(\text{n + 5 = (n - 1)+6}\)
Vì \(\text{(n-1) ⋮ n-1}\)
Nên để \(\text{n+5 ⋮ n-1}\)⋮ `n-1`
Thì \(\text{6 ⋮ n-1}\)
\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)
\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)
\(\text{________________________________________________________}\)
b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)
Vì \(\text{2(n+2) ⋮ n+2}\)
Nên để \(\text{2n-4 ⋮ n+2}\)
Thì \(\text{8 ⋮ n+2}\)
\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)
\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )
\(\text{_________________________________________________________________ }\)
c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)
Vì \(\text{3(2n+1) ⋮ 2n+1}\)
Nên để\(\text{ 6n+4 ⋮ 2n+1}\)
Thì \(\text{1 ⋮ 2n+1}\)
\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)
\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)
\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )
\(\text{_______________________________________}\)
Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)
Vì \(\text{-2(n+1) ⋮ n+1}\)
Nên để \(\text{3-2n ⋮ n+1}\)
Thì\(\text{ 5 ⋮ n + 1}\)
\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )
( 2n + 5 ) : n + 1
<=> 2n + 2 + 3 : n+ 1
2.( n+ 1) + 3 : n+ 1
mà 2 ( n+ 1 ) : n + 1
=> 3 : n+ 1
n + 1 thuộc ước (3 ) ={ +-1 ; + -3 }
n+1 | -1 | 1 | -3 | 3 |
n | -2 | 0 | -4 | 2 |
vậy n { -4; -2 ; -0 ; 2 }
b, ( 3n+ 1 : n-1
<=> 3n -3 + 4 : n-1
3 .( n-1 ) +4 : n-1
mà 3 ( n-1 ) : n-1
=> 4 : n-1
( tương tự như trên nha )
c, n+ 5 : 2n + 1
<=> 2n + 10 : 2n + 1
( 2n + 1 ) + 9 : 2n + 1
mà 2n + 1 : 2n + 1
=> 9 : 2n + 1
( tương tự như trên)
Bài 1
Ta có :
(2n + 5) \(⋮\)(n + 1 ) => (2n + 2) + 3 \(⋮\)(n + 1)
=> 3 \(⋮\)(n + 1) => n + 1 \(\in\)Ư(3) => n + 1\(\in\){1 ; -1 ; 3 ; -3}
- Với n + 1 = 1 => n = 0
- Với n + 1 = -1 => n = -2
- Với n + 1 = 3 => n = 2
- Với n + 1 = -3 => n = -4
Bài 2
Ta có :
(3n + 1) \(⋮\)(n - 1) => (3n - 3) + 4 \(⋮\)(n - 1)
=> 4 \(⋮\)(n - 1) => n - 1 \(\in\)Ư(4) => n - 1 \(\in\) {1 ; -1 ; 2 ; -2 ; 4 ; -4}
- Với n - 1 = 1 => n = 2
- Với n - 1 = -1 => n = 0
- Với n - 1 = 2 => n = 3
- Với n - 1 = -2 => n = -1
- Với n - 1 = 4 => n = 5
- Với n - 1 = -4 => n = -3
Bài 3 thì mình bó tay
Ta có : 2n + 9 chia hết cho n - 1
=> n - 1 + n - 1 + 11 chia hết cho n - 1
=> 11 chia hết cho n - 1 => n - 1 thuộc Ư ( 11 )
Mà Ư ( 11 ) = { 1 ; 11 ; - 1; - 11 }
=> n - 1 thuộc { 1 ; 11; - 1 ; - 11 }
=> n thuộc { 2 ; 12 ; 0 ; - 10 }
Ta có :
(2n+5) chia hết (n+1)
=>(n+1+n+5) chia hết (n+1)
Vì n+1 chia hết cho n+1
=>(n+5)chia hết (n+1)
=>(n+1+4) chia hết (n+1)
Vì n+1 chia hết cho n+1
=> 4 chia hết n+1
=> n+1 thuộc Ư(4)
=> n+1 thuộc 4,-4,2,-2,1,-1
=> n = 3,-5,1,-3,0,-2
Ta có 2n+5=2(n+1)+3
=> 3 chia hết cho n+1
n nguyên => n+1 nguyên => n+1\(\in\)Ư(3)={-3;-1;1;3}
ta có bảng
n+1 | -3 | -1 | 1 | 3 |
n | -4 | -2 | 0 | 2 |
Vậy n={-4;-2;0;2}
2n+ 1 chia hết cho n - 3
2n - 6 +7 chia hết cho n - 3
( 2n - 6 ) + 7 chia hết cho n - 3
2( n - 3) + 7 chia hết cho n - 3
Vì 2( n - 3) chia hết cho n-3 với mọi n
=> 7 chia hết cho n -3
=> n-3 thuộc { -7 ; -1 ; 1 ; 7 }
=> n thuộc { -4 ; 2 ; 4 ; 10 }
\(\hept{\begin{cases}^1\\ư\\a\end{cases}^2_z\overrightarrow{z}}\)
giúp mk!
2n+1=2n-3+4 chia hết cho n-3
mà 2n-3 chia hết cho n-3
=> 4 chia hết cho n-3
mà 4 chia hết cho 1;-1;2;-2;4;-4
=>n-3 = 1 => n = 4
n-3 = -1 => n= 2
n-3 = 2 => n = 5
n-3 = -2 => n = 1
n-3 = 4 => n = 7
n-3 = -4 => n = -1
KL n=4;2;5;1;7;-1
2n+1 chia hết n-1
=>2n-2+3chia hết cho n-1
=>2(n-1)+3 chia hết n-1
Vì 2(n-1) chia hết cho n-1 nên 3 chia hết cho n-1
=>n-1 thuộc Ư(3)={1;-1;3;-3}
Với n-1=1=>n=1+1=>n=2
n-1=-1=>n=(-1)+1=>n=0
n-1=3=>n=3+1=>n=4
n-1=-3=>n=(-3)+1=>n=-2
Vậy n=2;0;4;-2