Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 2n + 5 ) : n + 1
<=> 2n + 2 + 3 : n+ 1
2.( n+ 1) + 3 : n+ 1
mà 2 ( n+ 1 ) : n + 1
=> 3 : n+ 1
n + 1 thuộc ước (3 ) ={ +-1 ; + -3 }
n+1 | -1 | 1 | -3 | 3 |
n | -2 | 0 | -4 | 2 |
vậy n { -4; -2 ; -0 ; 2 }
b, ( 3n+ 1 : n-1
<=> 3n -3 + 4 : n-1
3 .( n-1 ) +4 : n-1
mà 3 ( n-1 ) : n-1
=> 4 : n-1
( tương tự như trên nha )
c, n+ 5 : 2n + 1
<=> 2n + 10 : 2n + 1
( 2n + 1 ) + 9 : 2n + 1
mà 2n + 1 : 2n + 1
=> 9 : 2n + 1
( tương tự như trên)
Bài 1
Ta có :
(2n + 5) \(⋮\)(n + 1 ) => (2n + 2) + 3 \(⋮\)(n + 1)
=> 3 \(⋮\)(n + 1) => n + 1 \(\in\)Ư(3) => n + 1\(\in\){1 ; -1 ; 3 ; -3}
- Với n + 1 = 1 => n = 0
- Với n + 1 = -1 => n = -2
- Với n + 1 = 3 => n = 2
- Với n + 1 = -3 => n = -4
Bài 2
Ta có :
(3n + 1) \(⋮\)(n - 1) => (3n - 3) + 4 \(⋮\)(n - 1)
=> 4 \(⋮\)(n - 1) => n - 1 \(\in\)Ư(4) => n - 1 \(\in\) {1 ; -1 ; 2 ; -2 ; 4 ; -4}
- Với n - 1 = 1 => n = 2
- Với n - 1 = -1 => n = 0
- Với n - 1 = 2 => n = 3
- Với n - 1 = -2 => n = -1
- Với n - 1 = 4 => n = 5
- Với n - 1 = -4 => n = -3
Bài 3 thì mình bó tay
\(a,n+3⋮n\)
mà \(n⋮n\Rightarrow n\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(b,2n+3⋮n\)
mà \(2n⋮n\Rightarrow n\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(c,3n-1⋮n+1\)
\(\Rightarrow3n+3-2⋮n+1\)
\(\Rightarrow3\left(n+1\right)-2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\Rightarrow n\in\left\{0;-2;1;-3\right\}\)
8n + 3 chia hết cho 2n - 1
=>8n-4+7 chia hết cho 2n-1
=>7 chia hết cho 2n-1
=>2n-1 thuộc Ư(7)={-1;1;-7;7}
=>2n thuộc{0;2;-6;8}
=>n thuộc{0;1;-3;4}
Ta có:8n+3 chia hết cho 2n-1
=>8n-4+7 chia hết cho 2n-1
=>4(2n-1)+7 chia hết cho 2n-1
Mà 4(2n-1) chia hết cho 2n-1
=>7 chia hết cho 2n-1
=>2n-1\(\in\)Ư(7)={-7,-1,1,7}
=>2n\(\in\){-6,0,2,8}
=>n\(\in\){-3,0,1,4}
a, Ta có : \(\text{n + 5 = (n - 1)+6}\)
Vì \(\text{(n-1) ⋮ n-1}\)
Nên để \(\text{n+5 ⋮ n-1}\)⋮ `n-1`
Thì \(\text{6 ⋮ n-1}\)
\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)
\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)
\(\text{________________________________________________________}\)
b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)
Vì \(\text{2(n+2) ⋮ n+2}\)
Nên để \(\text{2n-4 ⋮ n+2}\)
Thì \(\text{8 ⋮ n+2}\)
\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)
\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )
\(\text{_________________________________________________________________ }\)
c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)
Vì \(\text{3(2n+1) ⋮ 2n+1}\)
Nên để\(\text{ 6n+4 ⋮ 2n+1}\)
Thì \(\text{1 ⋮ 2n+1}\)
\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)
\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)
\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )
\(\text{_______________________________________}\)
Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)
Vì \(\text{-2(n+1) ⋮ n+1}\)
Nên để \(\text{3-2n ⋮ n+1}\)
Thì\(\text{ 5 ⋮ n + 1}\)
\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )
n - 6 ⋮ n - 1 <=> ( n - 1 ) + 7 ⋮ n - 1
Vì n - 1 ⋮ n - 1 , để ( n - 1 ) + 7 ⋮ n - 1 <=> 7 ⋮ n - 1 => n - 1 ∈ Ư ( 7 ) = { + 1 ; + 7 }
Ta có bảng sau :
n - 1 | 1 | - 1 | 7 | - 7 |
n | 2 | 0 | 8 | - 6 |
Vậy n ∈ { - 6 ; 0 ; 2 ; 8 }
Các câu sau tương tự
6n + 3 \(⋮\)2n + 5
=> 6n + 15 - 12 \(⋮\)2n + 5
=> 3 . ( 2n + 5 ) - 12 \(⋮\)2n + 5 mà 3 . ( 2n + 5 ) \(⋮\)2n + 5 => 12 chia hết cho 2n + 5
=> 2n + 5 thuộc Ư ( 12 ) = { - 12 ; - 6 ; - 4 ; - 3 ; - 2 ; - 1 ; 1 ; 2 ; 3 ; 4 ; 6 ; 12 }
Còn lại bạn tự làm nha
\(3-2n⋮n-1\)
\(\Rightarrow4-1-2n⋮n-1\)
\(\Rightarrow4-2n-1⋮n-1\)
\(\Rightarrow4⋮n-1\)
\(\Rightarrow n-1\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{-1;1;2;-2;4;-4\right\}\)
Ta có bảng sau :
n - 1 | - 1 | 1 | - 2 | 2 | - 4 | 4 |
n | 0 | 2 | - 1 | 3 | - 3 | 5 |
Vậy .......
\(M=2n+1⋮n-1\)
\(2\left(n-1\right)+3⋮n-1\Rightarrow3⋮n+1\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)