Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : tích của bốn số a^2 - 10, a^2 - 7, a^2 -1, a^2 - 4 đều là số âm nên phải có một hoặc 3 số âm.
Ta có : a^2 - 10 < a^2 - 7< a^2 - 4 < a^2 -1. nên ta có 2 trường hợp :
+ Có một số âm, ba số dương :
a^2 - 10 < 0 < a^2 - 7 => 7 < a^2 < 10 => a^2 = 9 => a = 3 hoặc -3
+ Có ba số âm, một số dương :
a^2 - 4 < 0 < a^2 - 1 => 1 < a^2 < 4 . vì a thuộc Z nên ko tồn tại a
Vậy a = 3 hoặc -3
Vì : tích của 4 thừa số là 1 số nguyên âm => phải có một thừa số âm hoặc 3 thừa số âm
Mà : a2 - 10 < a2 - 7 < a2 - 4 < a2 - 1
+) Nếu : có 1 thừa số âm
=> a2 - 10 < 0 < a2 - 7 => a2 = 9 = 32 => a = 3
+) Nếu : có 3 thừa số âm
=> a2 - 4 < 0 < a2 - 1 => a2 thuộc rỗng => a thuộc rỗng
Vậy a = 3
(a2 - 1)(a2 - 4)(a2 - 7)(a2 - 10) < 0
=> (a\(^2\)- 1 ) = 0 => a\(^2\)=1 => a = +-1
=> (a\(^2\)- 4 ) = 0 => a\(^2\)= 4 => a = +-2
=> (a\(^2\)- 7 ) = 0 => a\(^2\)= 7 => a = rỗng ( vì a nguyên )
=> (a\(^2\)- 10 ) = 0 => a\(^2\)= 10 => a = rỗng ( vì a nguyên )
Vậy, ..............
Cô hướng dẫn em lập bảng xét dấu:
Từ bảng xét dấu trên ta có :
\(\left(a^2-1\right)\left(a^2-4\right)\left(a^2-7\right)\left(a^2-10\right)< 0\)
\(\Leftrightarrow-\sqrt{10}< a< -\sqrt{7}\) hoặc -2 < a < -1 hoặc 1 < a < 2 hoặc \(\Leftrightarrow\sqrt{7}< a< \sqrt{10}\)
Do a nguyên nên \(\orbr{\begin{cases}a=-3\\a=3\end{cases}}\)
TH1:Tích có chứa 1 thừa số nguyên âm:
Ta có:\(^{a^2-1>a^2-4>a^2-7>a^2-10}\)
\(\Rightarrow\hept{\begin{cases}a^2-7>0\\a^2-10< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2>7\\a^2< 10\end{cases}}\)
\(\Rightarrow a^2=9\Rightarrow a=3\)
TH2: Tích có chứa 3 thừa số nguyên âm:
Ta có: \(a^2-1>a^2-4>a^2-7>a^2-10\)
\(\Rightarrow\hept{\begin{cases}a^2-1>0\\a^2-4< 0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a^2>1\\a^2< 4\end{cases}}\)
\(\Rightarrow\)Không có giá trị nào của a trong TH2
Vậy a=3