K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2016

Câu 2) 

1)* Nếu : \(x^2-2\ge0;2-x^2\ge0=>x^2-2+2-x^2\)=28

=> \(x^2-x^2-2+2=28=>0x^2=28\) ( vô lý )

Vậy x không có giá trị

* Nếu : \(x^2-2< 0:2-x^2< 0\)

=> \(-\left(x^2-2\right)-\left(2-x^2\right)=28=>-x^2+2-2+x^2=28=>0x^2=28\left(l\right)\)

Vậy từ hai trường hợp trên x không có giá trị

7762≡1(mod3)⇒776776≡1(mod3)
777777≡0(mod3)
7782≡1(mod3)⇒778778≡1(mod3)
⇒A≡2(mod3) 

16 tháng 3 2017

Ta có a2 - 25 < a2 - 10 < a2 - 7. Để (a2 - 7)(a2 - 10)(a2 - 25) < 0 thì ta có 2 trường hợp :

TH1 : 1 thừa số âm và 2 thừa số dương

=> a2 - 25 < 0 < a2 - 10 < a2 - 7\(\Rightarrow\hept{\begin{cases}a^2-25< 0\\a^2-10>0\end{cases}\Rightarrow\hept{\begin{cases}a^2< 25\\a^2>10\end{cases}}}\)=> a2 = 16 => a2 = -4 ; 4

TH2 : 3 thừa số đều âm

=> a2 - 25 < a2 - 10 < a2 - 7 < 0 => a2 - 7 < 0 => a2 < 7 =>\(a^2\in\) {0 ; 1 ; 4} =>\(a\in\){0 ; -1 ; 1 ; -2 ; 2}

Vậy\(a\in\){-4 ; -2 ; -1 ; 0 ; 1 ; 2 ; 4}

16 tháng 3 2017

Xét \(a^2-25\ge0\) \(\Rightarrow\hept{\begin{cases}a^2-7>0\\a^2-10>0\end{cases}}\)

\(\Rightarrow\left(a^2-7\right)\left(a^2-10\right)\left(a^2-25\right)\ge0\left(l\right)\)

\(\Rightarrow a^2< 25\)

\(\Rightarrow a^2=\left(0,1,4,9,16\right)\)

Thế \(a^2=0\) \(\Rightarrow\left(a^2-7\right)\left(a^2-10\right)\left(a^2-25\right)=\left(-7\right)\left(-10\right)\left(-25\right)< 0\left(nhan\right)\)

Tương tự ta tìm được các giá trị a2 thỏa đề bài là: 0, 1, 4, 16

\(\Rightarrow a=\left(-4,-2,-1,0,1,2,4\right)\)

d) Ta có: \(n^2+5n+9⋮n+3\)

\(\Leftrightarrow n^2+3n+2n+6+3⋮n+3\)

\(\Leftrightarrow n\left(n+3\right)+2\left(n+3\right)+3⋮n+3\)

mà \(n\left(n+3\right)+2\left(n+3\right)⋮n+3\)

nên \(3⋮n+3\)

\(\Leftrightarrow n+3\inƯ\left(3\right)\)

\(\Leftrightarrow n+3\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{-2;-4;0;-6\right\}\)

Vậy: \(n\in\left\{-2;-4;0;-6\right\}\)

8 tháng 3 2021

d) Ta có: n2+5n+9⋮n+3n2+5n+9⋮n+3

⇔n2+3n+2n+6+3⋮n+3⇔n2+3n+2n+6+3⋮n+3

⇔n(n+3)+2(n+3)+3⋮n+3⇔n(n+3)+2(n+3)+3⋮n+3

mà n(n+3)+2(n+3)⋮n+3n(n+3)+2(n+3)⋮n+3

nên 3⋮n+33⋮n+3

⇔n+3∈Ư(3)⇔n+3∈Ư(3)

⇔n+3∈{1;−1;3;−3}