Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tích bốn số a2 - 10, a2 - 7, a2 - 4, a2 - 1 là số âm nên phải có 1 hoặc 3 số âm.
Ta có : a2 - 10 < a2 - 7 < a2 - 7 < a2 - 4 < a2 - 1.
Xét 2 trường hợp :
TH1 : có 1 số âm, 3 số dương
a2 - 10 < a2 - 7 \(\Rightarrow\)7 < a2 < 10 \(\Rightarrow\)a2 = 9 ( do a \(\in\)Z ) \(\Rightarrow\)a = -3 hoặc a = 3
TH2 : có 3 số âm, 1 số dương
a2 - 4 < 0 < a2 - 1 \(\Rightarrow\)1 < a2 < 4 . Do a \(\in\)Z nên không có số nguyên a nào thỏa mãn
Vậy \(a=\orbr{\begin{cases}3\\-3\end{cases}}\)
Lí luận chung cho cả 4 câu :
Để tích này bé hơn 0 thì các thừa số phải trái dấu với nhau
a) Dễ thấy \(x-2>x-7\)
\(\Rightarrow\hept{\begin{cases}x-2>0\\x-7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 7\end{cases}\Leftrightarrow}2< x< 7}\)
b) tương tự
c) \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
Dễ thấy \(x^4-11x^2+10< x^4-11x^2+28\)
\(\Rightarrow\hept{\begin{cases}x^4-11x^2+10< 0\\x^4+11x^2+10>0\end{cases}}\)
Tự giải nốt nha bạn mình bận rồi
Trả lời
Mk nghĩ bạn có thể tham khảo ở CHTT nha !
Có đáp án của câu b;c và d đó.
Đừng ném đá chọi gạch nha !
a) vi(x^2+5)(x^2-25)=0
=>x^2+5=0 hoac x^2-25=0
=>x=...hoac x=...(tu lam)
b)(x-2)(x+1)=0
=>x-2=0 hoac x+1=0
=>x=2 hoac x=-1
c)(x^2+7)(x^2-49)<0
=>x^2+7va x^2-49 trai dau
ma x^2+7>=7=>x^2-49<0=>x<7 va x>-7
con lai tuong tu
tu lam nhe nho k nha
2/ Ta có : 4x - 3 \(⋮\) x - 2
<=> 4x - 8 + 5 \(⋮\) x - 2
<=> 4(x - 2) + 5 \(⋮\) x - 2
<=> 5 \(⋮\)x - 2
=> x - 2 thuộc Ư(5) = {-5;-1;1;5}
Ta có bảng :
x - 2 | -5 | -1 | 1 | 5 |
x | -3 | 1 | 3 | 7 |
đây là bất đẳng thức
giải cho 1 bài thôi:
(x-2)(x+2)<0
=>x-2 và x+2 trái dấu
mà x-2<x+2
=>x-2<0 và x+2>0
=>x<-2 và x>-2
=>-2<x<2=>x E {-1;0;1}
còn lại tương tự
a)\(10\left(x-7\right)-8\left(x+5\right)=6\cdot\left(-5\right)+24\)
\(10x-10\cdot7-8x-8\cdot5=\left(-30\right)+24\)
\(10x-70-8x-40=-6\)
\(10x-8x=\left(-6\right)+70+40\)
\(2x=104\)
\(x=104\div2\)
\(x=52\)
b)\(2\left(4x-8\right)-7\left(3+x\right)=6\)
\(2\cdot4x-2\cdot8-7\cdot3-7x=6\)
\(8x-16-21-7x=6\)
\(8x-7x=6+16+21\)
\(x=43\)
Ta có a2 - 25 < a2 - 10 < a2 - 7. Để (a2 - 7)(a2 - 10)(a2 - 25) < 0 thì ta có 2 trường hợp :
TH1 : 1 thừa số âm và 2 thừa số dương
=> a2 - 25 < 0 < a2 - 10 < a2 - 7\(\Rightarrow\hept{\begin{cases}a^2-25< 0\\a^2-10>0\end{cases}\Rightarrow\hept{\begin{cases}a^2< 25\\a^2>10\end{cases}}}\)=> a2 = 16 => a2 = -4 ; 4
TH2 : 3 thừa số đều âm
=> a2 - 25 < a2 - 10 < a2 - 7 < 0 => a2 - 7 < 0 => a2 < 7 =>\(a^2\in\) {0 ; 1 ; 4} =>\(a\in\){0 ; -1 ; 1 ; -2 ; 2}
Vậy\(a\in\){-4 ; -2 ; -1 ; 0 ; 1 ; 2 ; 4}
Xét \(a^2-25\ge0\) \(\Rightarrow\hept{\begin{cases}a^2-7>0\\a^2-10>0\end{cases}}\)
\(\Rightarrow\left(a^2-7\right)\left(a^2-10\right)\left(a^2-25\right)\ge0\left(l\right)\)
\(\Rightarrow a^2< 25\)
\(\Rightarrow a^2=\left(0,1,4,9,16\right)\)
Thế \(a^2=0\) \(\Rightarrow\left(a^2-7\right)\left(a^2-10\right)\left(a^2-25\right)=\left(-7\right)\left(-10\right)\left(-25\right)< 0\left(nhan\right)\)
Tương tự ta tìm được các giá trị a2 thỏa đề bài là: 0, 1, 4, 16
\(\Rightarrow a=\left(-4,-2,-1,0,1,2,4\right)\)