\(\left(a^2-7\right)\left(a^2-10\right)\left(a^2-25\right)< 0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2017

Ta có a2 - 25 < a2 - 10 < a2 - 7. Để (a2 - 7)(a2 - 10)(a2 - 25) < 0 thì ta có 2 trường hợp :

TH1 : 1 thừa số âm và 2 thừa số dương

=> a2 - 25 < 0 < a2 - 10 < a2 - 7\(\Rightarrow\hept{\begin{cases}a^2-25< 0\\a^2-10>0\end{cases}\Rightarrow\hept{\begin{cases}a^2< 25\\a^2>10\end{cases}}}\)=> a2 = 16 => a2 = -4 ; 4

TH2 : 3 thừa số đều âm

=> a2 - 25 < a2 - 10 < a2 - 7 < 0 => a2 - 7 < 0 => a2 < 7 =>\(a^2\in\) {0 ; 1 ; 4} =>\(a\in\){0 ; -1 ; 1 ; -2 ; 2}

Vậy\(a\in\){-4 ; -2 ; -1 ; 0 ; 1 ; 2 ; 4}

16 tháng 3 2017

Xét \(a^2-25\ge0\) \(\Rightarrow\hept{\begin{cases}a^2-7>0\\a^2-10>0\end{cases}}\)

\(\Rightarrow\left(a^2-7\right)\left(a^2-10\right)\left(a^2-25\right)\ge0\left(l\right)\)

\(\Rightarrow a^2< 25\)

\(\Rightarrow a^2=\left(0,1,4,9,16\right)\)

Thế \(a^2=0\) \(\Rightarrow\left(a^2-7\right)\left(a^2-10\right)\left(a^2-25\right)=\left(-7\right)\left(-10\right)\left(-25\right)< 0\left(nhan\right)\)

Tương tự ta tìm được các giá trị a2 thỏa đề bài là: 0, 1, 4, 16

\(\Rightarrow a=\left(-4,-2,-1,0,1,2,4\right)\)

7 tháng 6 2017

Tích bốn số a2 - 10, a2 - 7, a2 - 4, a2 - 1 là số âm nên phải có 1 hoặc 3 số âm.

Ta có : a2 - 10 < a2 - 7 < a2 - 7 < a2 - 4 < a2 - 1.

Xét 2 trường hợp :

TH1 : có 1 số âm, 3 số dương

a2 - 10 < a2 - 7 \(\Rightarrow\)7 < a2 < 10 \(\Rightarrow\)a2 = 9 ( do a \(\in\)Z ) \(\Rightarrow\)a = -3 hoặc a = 3

TH2 : có 3 số âm, 1 số dương 

a2 - 4 < 0 < a2 - 1 \(\Rightarrow\)1 < a2 < 4 . Do a \(\in\)Z nên không có số nguyên a nào thỏa mãn

Vậy \(a=\orbr{\begin{cases}3\\-3\end{cases}}\)

6 tháng 9 2017

A =3;-3

16 tháng 2 2019

Lí luận chung cho cả 4 câu :

Để tích này bé hơn 0 thì các thừa số phải trái dấu với nhau 

a) Dễ thấy \(x-2>x-7\)

\(\Rightarrow\hept{\begin{cases}x-2>0\\x-7< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>2\\x< 7\end{cases}\Leftrightarrow}2< x< 7}\)

b) tương tự

c) \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)

\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)

Dễ thấy \(x^4-11x^2+10< x^4-11x^2+28\)

\(\Rightarrow\hept{\begin{cases}x^4-11x^2+10< 0\\x^4+11x^2+10>0\end{cases}}\)

Tự giải nốt nha bạn mình bận rồi 

13 tháng 8 2019

Trả lời

Mk nghĩ bạn có thể tham khảo ở CHTT nha !

Có đáp án của câu b;c và d đó.

Đừng ném đá chọi gạch nha !

a) vi(x^2+5)(x^2-25)=0

=>x^2+5=0 hoac x^2-25=0

=>x=...hoac x=...(tu lam)

b)(x-2)(x+1)=0

=>x-2=0 hoac x+1=0

=>x=2 hoac x=-1

c)(x^2+7)(x^2-49)<0

=>x^2+7va x^2-49 trai dau

ma x^2+7>=7=>x^2-49<0=>x<7 va x>-7

con lai tuong tu

tu lam nhe nho k nha

15 tháng 6 2017

2/ Ta có : 4x - 3 \(⋮\) x - 2

<=> 4x - 8 + 5  \(⋮\) x - 2

<=> 4(x - 2) + 5  \(⋮\) x - 2

<=> 5 \(⋮\)x - 2 

=> x - 2 thuộc Ư(5) = {-5;-1;1;5}

Ta có bảng : 

x - 2-5-115
x-3137
4 tháng 1 2016

đây là bất đẳng thức

giải cho 1 bài thôi:

(x-2)(x+2)<0

=>x-2 và x+2 trái dấu

mà x-2<x+2

=>x-2<0 và x+2>0

=>x<-2 và x>-2

=>-2<x<2=>x E {-1;0;1}

còn lại tương tự

4 tháng 1 2016

lớp 6 hok bài nek rùi ak, như bài lớp 9 í

7 tháng 5 2019

a)\(10\left(x-7\right)-8\left(x+5\right)=6\cdot\left(-5\right)+24\)

\(10x-10\cdot7-8x-8\cdot5=\left(-30\right)+24\)

\(10x-70-8x-40=-6\)

\(10x-8x=\left(-6\right)+70+40\)

\(2x=104\)

\(x=104\div2\)

\(x=52\)

b)\(2\left(4x-8\right)-7\left(3+x\right)=6\)

\(2\cdot4x-2\cdot8-7\cdot3-7x=6\)

\(8x-16-21-7x=6\)

\(8x-7x=6+16+21\)

\(x=43\)