K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 12 2023

Giữa n! và 2003 là dấu gì hả bạn?

19 tháng 12 2020

Đặt A=n!+2003
Với n=0⇒A=2004 không phải số chính phương
Với n=1,2,3,4,5 ta có điều tương tự
Với n>5⇒n! tận cùng là 0
⇒A tận cùng là 3
Vậy A không là số chính phương với mọi n

12 tháng 1 2017

xét x<4 và x>3

nếu x<4 thì: +Với x=1 thì x!+2003=2004 (loại vì ko là scp)

                 +Với x=2 thì x!+2003=2005 (loại vì ko là scp)

                 +Với x=3 thì x!+2003=2009 (loại vì ko là scp)

nếu x>3 thì x! sẽ chia hết cho 3                (1)

Mặt khác 2003 chia 3 dư 2             (2)

Từ (1) và (2) suy ra: x!+2003 chia 3 dư 2 

Mà scp khi chia cho 3 ko có số dư là 2

=> x!+2003 ko là scp

Vậy ......................

12 tháng 12 2015

Chtt nha !

25 tháng 8 2016

khó quá

25 tháng 8 2016

khó quá các bạn nhỉ

13 tháng 5 2015

p=2 thì p^4+2 là hợp số

p=3 =>p^4+2=83 là số nguyên tố

với p>3 thì p có dang 3k+1 và 3k+2 thay vào chúng đều là hợp số

vậy p=3

14 tháng 5 2015

giả sử x = 2n + 2003, y = 3n + 1005 là các số chính phương

Đặt  2n + 2003 = k2        (1)      và  3n + 2005 = m2              (2)   (k, m \(\in\) N)

trừ theo từng vế của (1), (2) ta có: 

 n + 2 = m2 - k2

khử n từ (1) và (2)  =>  3k2  - 2m2 = 1999            (3)

từ (1)   =>  k là số lẻ . Đặt k = 2a + 1 ( a Z) . Khi đó : (3) <=> 3 (2a -1)  - 2m2 = 1999 

<=> 2m= 12a2 + 12a - 1996 <=> m2 = 6a2 + 6a - 998 <=> m2 = 6a (a+1) - 1000 + 2             (4)

vì a(a+1) chia hết cho 2 nên 6a (a+1) chia hết cho 4, 1000 chia hết cho 4 , vì thế từ (4) =>  m2 chia 4 dư 2, vô lý

vậy ko tồn tại các số nguyên dương n thỏa mãn bài toán

16 tháng 6 2018

10 \(\le\)\(\le\)99 => 21 < 2n + 1 < 199 và 31 < 3n + 1 < 298

Vì 2n + 1 là số lẻ mà 2n + 1 là số chính phương

=> 2n + 1 thuộc { 25 ; 49  ; 81 ; 121 ;  169 } tương ứng số n thuộc { 12; 24; 40; 60; 84 } ( 1 )

Vì 3n + 1 là số chính phương và 31 < 3n + 1 < 298

=> 3n + 1 thuộc { 49 ; 64 ; 100 ; 121 ; 169 ; 196 ; 256 ; 289 } tương ứng n thuộc { 16 ; 21 ; 33 ; 40 ; 56 ; 65 ; 85 ; 96 } ( 2 )

Từ 1 và 2 => n = 40 thì 2n + 1 và 3n + 1 đều là số chính phương

29 tháng 11 2018

bài cô giao đi hỏi 

12 tháng 4 2023

Để tìm được số n thỏa mãn các điều kiện trên, ta cần áp dụng các bước sau:

  1. Tìm các số chính phương có 4 chữ số. Ta biết rằng căn bậc hai của một số chính phương có 4 chữ số là một số có 2 chữ số (từ 31 đến 99). Vì vậy, ta chỉ cần xét các số trong khoảng từ 31² ( = 961) đến 99² ( = 9801).

  2. Tìm các số trong các số chính phương này mà là bội của 147. Để là bội của 147, số đó phải chia hết cho cả 3 và 49 (= 7 x 7). Như vậy, ta chỉ cần xét các số trong danh sách các số chính phương tìm được ở trên, và lọc ra những số chia hết cho 3 và 49.

  3. Kiểm tra kết quả. Sau khi tìm được danh sách các số thỏa mãn, ta chỉ cần kiểm tra từng số trong số đó để xác định số n là số cần tìm.

Danh sách các số chính phương có 4 chữ số:

  • 961, 1024, 1089, 1156, 1225, 1296, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364, 3481, 3600, 3721, 3844, 3969, 4096, 4225, 4356, 4489, 4624, 4761, 4900, 5041, 5184, 5329, 5476, 5625, 5776, 5929, 6084, 6241, 6400, 6561, 6724, 6889, 7056, 7225, 7396, 7569, 7744, 7921, 8100, 8281, 8464, 8649, 8836, 9025, 9216, 9409, 9604, 9801.

Danh sách các số chính phương có 4 chữ số là bội của 147:

  • Không có số nào trong danh sách trên là bội của 147.

Vì vậy, không tồn tại số n thỏa mãn các điều kiện đã cho.

12 tháng 4 2023

ủa sao tui thấy người ta giải đc mà tui ko hiểu