Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 2n + 5 = 2n -1 + 6
2n+5 chia hết cho 2n-1 <=> 2n-1+6 chia hết 2n-1
Mà 2n-1 chia hết 2n-1
=> Để 2n-1+6 chia hết 2n-1 thì 6 chia hết 2n-1
=> 2n-1 thuôc Ư(6) = {1,2,3,6}
TH1: 2n-1 =1 => n=1
TH2: 2n-1 = 2 => n= 3:2 không là số tự nhiên (loại)
TH3: 2n-1 = 3 => n=2
TH4: 2n-1 = 6 => n= 7:2 không là số tự nhiên (loại)
Vậy n có 2 giá trị là 1 và 2
Ta có 2n + 5 = 2n -1 + 6
2n+5 chia hết cho 2n-1 <=> 2n-1+6 chia hết 2n-1
Mà 2n-1 chia hết 2n-1
=> Để 2n-1+6 chia hết 2n-1 thì 6 chia hết 2n-1
=> 2n-1 thuôc Ư(6) = {1,2,3,6}
TH1: 2n-1 =1 => n=1
TH2: 2n-1 = 2 => n= 3:2 không là số tự nhiên (loại)
TH3: 2n-1 = 3 => n=2
TH4: 2n-1 = 6 => n= 7:2 không là số tự nhiên (loại)
Vậy n có 2 giá trị là 1 và 2
a, Ta có : \(\text{n + 5 = (n - 1)+6}\)
Vì \(\text{(n-1) ⋮ n-1}\)
Nên để \(\text{n+5 ⋮ n-1}\)⋮ `n-1`
Thì \(\text{6 ⋮ n-1}\)
\(\Rightarrow\) \(\text{n - 1 ∈ Ư(6)}\)
\(\Rightarrow\) \(\text{n - 1 ∈}\) \(\left\{\text{±1;±2;±3;±6}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{0;-1;-2;-5;2;3;4;7}\right\}\) \(\text{( TM )}\)
\(\text{________________________________________________________}\)
b, Ta có : \(\text{2n-4 = (2n+4)- 8 = 2(n+2) - 8}\)
Vì \(\text{2(n+2) ⋮ n+2}\)
Nên để \(\text{2n-4 ⋮ n+2}\)
Thì \(\text{8 ⋮ n+2}\)
\(\Rightarrow\) \(\text{n + 2 ∈ Ư(8)}\)
\(\Rightarrow\) \(\text{n + 2 ∈}\) \(\left\{\text{±1;±2;±4;±8}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-3;-4;-6;-10;-1;0;2;6}\right\}\) ( TM )
\(\text{_________________________________________________________________ }\)
c, Ta có :\(\text{ 6n + 4 = (6n + 3) +1 = 3(2n+1) + 1}\)
Vì \(\text{3(2n+1) ⋮ 2n+1}\)
Nên để\(\text{ 6n+4 ⋮ 2n+1}\)
Thì \(\text{1 ⋮ 2n+1}\)
\(\Rightarrow\) \(\text{2n + 1 ∈ Ư(1)}\)
\(\Rightarrow\) \(\text{2n + 1 ∈}\) \(\left\{\text{±1}\right\}\)
\(\Rightarrow\) \(\text{2n ∈}\) \(\left\{\text{-2;0}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\left\{\text{-1;0}\right\}\) ( TM )
\(\text{_______________________________________}\)
Ta có : \(\text{3 - 2n = -( 2n - 3 ) = -( 2n + 2 ) + 5 = -2( n+1)+5}\)
Vì \(\text{-2(n+1) ⋮ n+1}\)
Nên để \(\text{3-2n ⋮ n+1}\)
Thì\(\text{ 5 ⋮ n + 1}\)
\(\Rightarrow\) \(\text{n + 1 ∈}\) \(\left\{\text{±1;±5}\right\}\)
\(\Rightarrow\) \(\text{n ∈}\) \(\text{-2;-6;0;4}\) ( TM )
a) 20 chia hết cho 2n + 1
<=> 2n + 1 thuộc Ư(20)
Mà Ư(20) = {1;-1;2;-2;4;-4;5;-5;10;-10;20;-20}
Ta lập được bảng sau:
2n+1 | 1 | -1 | 2 | -2 | 4 | -4 | 5 | -5 | 10 | -10 | 20 | -20 |
n | 0 | -1 | 0,5 | -1,5 | 1,5 | -2,5 | 2 | -3 | 4,5 | -5,5 | 9,5 | -10,5 |
Vậy ......
b) Cũng tương tự
12 chia hết cho (n-1)
<=> (n-1) thuộc Ư(12) = {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
(Đến đây bạn tự lập bảng như câu a nha)
Vì 2n + 1 \(⋮\)2n + 1 \(\Rightarrow\)n + 6 \(⋮\)2n + 1
\(\Rightarrow\)2n + 12 \(⋮\) 2n + 1 \(\Rightarrow\)(2n + 12) - (2n + 1)\(⋮\)2n + 1
\(\Rightarrow\)11 \(⋮\)2n + 1 \(\Rightarrow\)2n + 1 = Ư ( 11 ) \(\Rightarrow\)2n + 1 = { 1, 11 }
TH1 : 2n + 1 = 1
\(\Rightarrow\)n = 0
TH2 : 2n + 1 = 11
\(\Rightarrow\)n = 5
Vậy n = { 0,5 }
\(3⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
bn tự lập bảng nha !
\(\Rightarrow2n-1\inƯ\left(3\right)\)
\(\Rightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
\(\Rightarrow2n\in\left\{2;0;4;-4\right\}\)
\(\Rightarrow n\in\left\{1;0;2;-2\right\}\)
học tốt
a/ n + 6 = n+ 2 + 4
để n + 6 chia hết cho n + 2 thì n+ 2+4 chia hết cho n+ 2
mà n+ 2 chia hết cho n+ 2
=> 4 chia hết cho n+ 2
=> n+ 2 \(\in\)Ư(4)
mà Ư(4) = {1;2;4}
=> n + 2 \(\in\) {1;2;4}
=> n \(\in\) {-1;0; 2}
mà n \(\in\) N và n là số chia
=> n = 2 phần
b/ bn làm tương tự như vậy nha
ủng hộ mk nha
12 \(⋮\) 2n (n \(\ne\) 0; n \(\in\) Z)
6 ⋮ n
n \(\in\) Ư(6) = {- 6; -3; -2; -1; 1; 2; 3; 6}
Vậy n \(\in\) {-6; -3; -2; -1; 1; 2; 3; 6}