\(\left(x^{67}+x^{47}+x^{27}+x^7+x+1\right)\)):
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2019

đa thức chia có bậc 2 nên đa thức dư có bậc không quá 1. vậy đa thức dư có bậc nhất dạng ax+b

Ta có: \(x^{67}+x^{47}+x^{27}+x^7+x+1=\left(x^2-1\right).Q\left(x\right)+ax+b\)

Cho x=1 rồi x=-1 ta được: \(\hept{\begin{cases}1+1+1+1+1+1=a+b\\-1-1-1-1-1+1=-a+b\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}a+b=6\\-a+b=-4\end{cases}\Leftrightarrow\hept{\begin{cases}a=5\\b=1\end{cases}}}\)

Vậy dư trong phép chia trên là 5x+1

31 tháng 8 2020

Đề có sao không bạn \(1\sqrt{2}=\sqrt{2}\)

Thấy hơi lạ, toán lớp 8 mak dùng căn như thế này thì lần đầu gặp . Nhưng mk vẫn làm cái dạng, ví dụ bạn viết sai đề thì có thể nhìn dạng mak làm lại 

Ta có đa thức chia g(x) là đa thức bậc 2 nên đa thức dư là đa thức có bậc không lớn hơn 1 . 

Do đó gọi đa thức dư là ax+b ( lưu ý ở đây không thêm điều kiện a khác 0 do ax+b cs thể là đa thức bậc 0)
Ta có 

\(x^{27}+x^9+x^3+x=\left(x^2-\sqrt{2}\right)q\left(x\right)+ax+b\)

\(x^{27}+x^9+x^3+x=\left(x-\sqrt[4]{2}\right)\left(x+\sqrt[4]{2}\right)q\left(x\right)+ax+b\left(1\right)\)

Nếu \(x=\sqrt[4]{2}\)thì (1) trở thành : \(5\cdot\sqrt[4]{2}+65\cdot\left(\sqrt[4]{2}\right)^3=a\cdot\sqrt[4]{2}+b\)

Nếu \(x=-\sqrt[4]{2}\)thì (1) trở thành \(-5\cdot\sqrt[4]{2}-65\cdot\left(\sqrt[4]{2}\right)^3=-a\cdot\sqrt[4]{2}+b\)

Từ đó ta suy ra được .\(a=5+65\cdot\sqrt{2}\)\(b=0\)

Vậy đa thức dư là \(\left(5+65\cdot\sqrt{2}\right)x\)

Lưu ý : mấy cái phép tính căn thức thì bạn tự search google coi nhé. Nếu mình làm ra thì dài lắm  

11 tháng 10 2020

a,Gọi Đa thức dư là ax+b,thương là Q(x)

Ta có:f(x)=1+x+x19+x199+x2019

              =(1-x2)Q(x)+Q(x)+b

=>1+x+x19+x199+x2019=(1-x)(1+x)Q(x)+ax+b  (1)

Vì (1) đúng với mọi x,thay x=1 và x=-1 ta đc:

1+1+119+1199+12019=a+b

<=>a+b=5(*)

Với x=1 ta có:

1+(-1)+(-1)99+(-1)199+(-1)2019=a(-1)+b

<=>-a+b=-3(**)

Cộng (*) và (**) vế theo vế ta đc:2b=2=>b=1

Thay b=1 vào (*) ta đc:a=4

Vậy đa thức dư là 4x+1

b,Ta có:(x+1)(x+3)(x+5)(x+7)+2019

=(x+1)(x+7)(x+5)(x+3)+2019

=(x2+8x+7)(x2+8x+15)+2019 

=(x2+8x+12-5)(x2+8x+12+3)+2019

=(x2+8x+12)2-2(x2+8x+12)-15+2019

=(x2+8x+12)2-2(x2+8x+12)+2004

19 tháng 2 2017

\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+2008=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+2008\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)\)

đặt \(x^2+10x+21=a\)

ta có \(\left(a-5\right)\left(a+3\right)=a^2-2a-15+2008=a\left(a-2\right)+1993\)

ta có a(a-2) chia hết cho a hay x^2+10x+21

số dư là 1993

2 tháng 3 2018

1) Ta có f(x) = (x - 2)g(x) + 2005

              f(x) = (x - 3)h(x) + 2006

Do đa thức x2 - 5x + 6 là đa thức bậc hai nên số dư sẽ là đa thức bậc nhất hoặc hạng tử tự do.

Giả sử f(x) = (x - 2)(x - 3)t(x) + ax + b

Ta có:  f(x) = (x - 2)(x - 3)t(x) + ax + b = (x - 2)[(x - 3)t(x) + a] + 2a + b , suy ra ra 2a + b = 2005

           f(x) = (x - 2)(x - 3)t(x) + ax + b = (x - 3)[(x - 2)t(x) + a] + 3a + b , suy ra ra 3a + b = 2006

Từ đó ta tìm được a = 1; b = 2003

Vậy f(x) chia cho x2 - 5x + 6 dư x + 2003.

3 tháng 3 2019

Ủa sao chự nhiên có f(x) ở đây. À mà nói vậy thì cũng sai, chứ câu này chỉ có fan KPOP mới hiểu!^-^