K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TT
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
PT
0
D
1
10 tháng 11 2015
\(2^{101}:5=2^{100}.2:5=16^{25}.2:5=\left(....2\right):5\) số dư là 2
T
18 tháng 1 2021
a) Ta có: \(3^{2021}=3^{2019}\cdot3^2=\left(3^3\right)^{673}\cdot3^2\equiv1.3^2=9\left(mod13\right)\)
Vậy số dư của \(3^{2021}\) cho 13 là 9.
b) \(2008^{2008}=\left(2008^2\right)^{1004}\equiv1^{1004}=1\) (mod 7)
Vậy số dư của $2008^{2008}$ cho $7$ là $1.$
P/s: Rất lâu rồi mình không giải toán đồng dư nên không chắc bạn nhé.
TV
0
TT
0
4^10 đồng dư 1 (mod 68)
<=> 4^100 đồng dư 1 (mod 68)
<=>4^101 đồng dư 4 (mod 68)