Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(n-24⋮77\) => n-24 đồng thời chia hết cho 7 và 11
\(n-24⋮7\Rightarrow\left(n-3\right)-21⋮7\Rightarrow n-3⋮7\Rightarrow a=3\)
\(n-24⋮11\Rightarrow\left(n-2\right)-22⋮11\Rightarrow n-2⋮11\Rightarrow b=2\)
\(\Rightarrow a+b=3+2=5\)
cách giải
lời giải luôn
1/ a=5k+2; b=5n+3
(ab là a nhân b nếu là ab xẽ khác)
(5k+2)(5n+3)=25k.n+3.5.k+10n+6=5(5k.n+3k+2.n+1)+1 vây ab chia 5 dư 1
2/ a=7k+3
a62=7.7.k^2+2.3.7k+9=7(7k^2+6k+1)+2 vậy a^2 chia 7 dư 2
Gọi thương trong phét chia của P(x) cho x - 2 và x - 3 lần lượt là Q(x) , G(x)
Ta có : P(x) = (x - 2).Q(x) + 5 với mọi x (1)
P(x) = (x - 3).G(x) + 7 với mọi x (2)
Khi chia đa thức P(x) cho đa thức bậc hai (x - 2)(x - 3) thì số dư chỉ có thể có rạng R(x) = ax + b
Ta có : P(x) = (x - 2)(x - 3).h(x) + ax + b với mọi x (3)
Thay x = 2 vào (1) ta có : P(2) = 5 , thay vào 3 ta có : P(2) = 2a + b
Nên 2a + b = 5 (4)
Thay x = 3 vào (2) ta có : P(3) = 7 , thay vào (3) ta có : P(3) = 3a + b
Nên 3a + b = 7 (5)
Từ (4) và (5) => 3a + b - (2a + b) = 7 - 5
=> a = 2 => b = 5 - 2.2 = 1
Vậy số dư khi chia P(x) cho (x - 2)(x - 3) là : 2x + 1
gọi thương của phép chia a cho 7 là x ta có a=7x+3
gọi thương của phép chia b cho 7 là y ta có
b=7y+5
ta có ab=(7x+3)(7y+5)=49xy+35x+21y+15 =7(7xy+5x+3y+2)+1
Vậy số dư của phép chia ab cho 7 là 1
Do a chia 5 dư 1 => a = 5.m + 1; b chia 5 dư 2 => b = 5.n + 2 (m;n thuộc N*)
Ta có: a.b = (5.m + 1).(5.n + 2)
= (5.m + 1).5.n + (5.m + 1).2
= 25.m.n + 5.n + 10.m + 2 chia 5 dư 2
=> a.b chia 5 dư 2
\(taco:2011\equiv2\left(mod7\right)\Rightarrow2011^3\equiv8\equiv1\left(mod7\right)\Rightarrow2011^{2012}=2011^{2010}.2011^2\equiv1^{670}.4\equiv4\left(mod7\right)\)
mod7 là gì vậy