Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi đa thức dư khi lấy $f(x)$ chia cho $x^2+x-6$ là $ax+b$ với $a,b\in\mathbb{R}$, $Q(x)$ là đa thức thương.
Theo bài ra ta có:
$f(2)=6067$
$f(-3)=-4043$
$f(x)=(x^2+x-6)Q(x)+ax+b=(x-2)(x+3)Q(x)+ax+b$
Cho $x=2$ thì:
$f(2)=0.Q(2)+2a+b=2a+b$
$\Leftrightarrow 6067=2a+b(1)$
Cho $x=-3$ thì:
$f(-3)=0.Q(-3)-3a+b=-3a+b$
$\Leftrightarrow -4043=-3a+b(2)$
Từ $(1); (2)\Rightarrow a=2022; b=2023$
Vậy đa thức dư là $2022x+2023$
\(\left(x^3+27\right):\left(x^2-3x+9\right)=\left(x+3\right)\left(x^2-3x+9\right):\left(x^2-3x+9\right)=x+3\) \(x^3+27\) chia hết cho \(x^2-3x+9\) ,Vậy số dư là 0
Gọi số này là a, a:29=k dư 5: a:31=m dư 28
=> 29k + 5 = 31m +28
=> 29k + 29m = 23 + 2m
\(\Rightarrow29k+29m⋮29\)
\(\Rightarrow23+2m⋮29\)
Mà số cần tìm là STN nhỏ nhất
\(\Rightarrow\left(23+2m\right)⋮29\)và là STN nhỏ nhất
=> 2m = 29-23
=> 2m = 6
=> m=3
=> 31m + 28 = 31.3 + 28 chia hết cho a
=> a = 31.3+28
=> a = 93 + 28
=> a = 121
Vậy, số cần tìm là 121
a. S = 5 + 52 + 53 + 54 + 55 + 56 +...+ 52012.
S = (5 + 52 + 53 + 54) + 55(5 + 52 + 53 + 54)+....+ 52009(5 + 52 + 53 + 54)
Vì (5 + 52 + 53 + 54) = 780 chia hết cho 65
Vậy S chia hết cho 65
b. Gọi số cần tìm là a ta có: (a - 6) chia hết cho 11; (a - 1) chia hết cho 4; (a - 11) chia hết cho 19.
(a - 6 + 33) chia hết cho 11; (a - 1 + 28) chia hết cho 4; (a - 11 + 38) chia hết cho 19.
(a + 27) chia hết cho 11; (a + 27) chia hết cho 4; (a + 27) chia hết cho 19.
Do a là số tự nhiên nhỏ nhất nên a + 27 nhỏ nhất
Suy ra: a + 27 = BCNN (4;11; 19).
Từ đó tìm được: a = 809
A = 10n + 18n - 1 = 10n - 1 - 9n + 27n
Ta biết số n và số có tổng các chữ số bằng n có cùng số dư khi chia cho 9 do đó nên
* Vậy A chia hết cho 27
\(x^{27}+x^9-3x+x^3+4x=x\left(\left(x^2\right)^{13}-\left(1^2\right)^{13}\right)+x\left(\left(x^4\right)^2-\left(1^4\right)^2\right)+x\left(x^2-1\right)+4x\\ \)
\(x\left(x^2-1\right)Q\left(x\right)+x\left(\left(x^2\right)^2-\left(1\right)^2\right)\left(x^4+1\right)P\left(x\right)+x\left(x^2-1\right)+4x\)
Chia x^2-1 dư 4x
192010 + 72011 mod 27 là 26 đó