Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P(x) = 2x + 4{x^3} + 7{x^2} - 10x + 5{x^3} - 8{x^2}\)
\(=(4{x^3}+5{x^3})+( 7{x^2}- 8{x^2})+(2x-10x)\)
\( = 9{x^3} - {x^2} - 8x\)
Ta thấy số mũ cao nhất của biến x là 3 nên \(P(x)\) có bậc là 3
Hệ số của \({x^3}\) là 9
Hệ số của \({x^2}\)là -1
Hệ số của x là -8
Hệ số tự do là 0
Xét 4x2+10x+6=0
=>4x2+4x+6x+6=0
<=>4x(x+1)+6(x+1)=0
<=>(x+1)(4x+6)=0
<=>x+1=0 hoặc 4x+6=0
<=>x=-1 hoặc x=-6/4=-3/2
Vậy x=-1;x=-3/2 là nghiệm của đa thức 4x2+10x+6
a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp:
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}
a) f(x) = 10x² - 7x - 5 = 10x² - 15x + 8x - 12 + 7 = 5x(2x-3) + 4(2x-3) + 7
f(x) chia hết cho 2x-3 khi và chỉ khi 7 chia hết cho 2x-3, vì 7 là số nguyên tố, nên chi có các trường hợp:
TH1: 2x-3 = -1 <=> x = 1
TH2: 2x-3 = 1 <=> x = 2
TH3: 2x-3 = -7 <=> x = -2
TH4: 2x-3 = 7 <=> x = 5
Vây có 4 giá trị nguyên của x là {-2, 1, 2, 5}
b) g(x) = x³ - 4x² + 5x - 1 = x³ - 3x² - x² + 3x + 2x - 6 + 5 = x²(x-3) - x(x-3) + 2(x-3) + 5
g(x) chia hết cho x-3 khi và chỉ khi 5 chia hết cho x-3 (5 là số nguyên tố nên chỉ xét các trường hợp)
TH1: x-3 = -5 <=> x = -2
TH2: x-3 = -1 <=> x = 2
TH3: x-3 = 1 <=> x = 4
TH4: x-3 = 5 <=> x = 8
Vậy có giá trị nguyên của x thỏa là {-1, 2, 4, 8}
\(a\left(x\right)=10x-7\\ a\left(x\right)=0\Rightarrow10x-7=0\Rightarrow x=\dfrac{7}{10}\)
Vậy nghiệm của \(a\left(x\right)\) là \(x=\dfrac{7}{10}\)
\(b\left(x\right)=16x^2-x\\ b\left(x\right)=0\Rightarrow16x^2-x=0\Rightarrow x\left(16x-1\right)=0\)
TH1: \(x=0\)
TH2: \(16x-1=0\Rightarrow x=\dfrac{1}{16}\)
Vậy nghiệm của \(b\left(x\right)\) là \(x=0,x=\dfrac{1}{16}\)
Ta có: x2 + 10.x = 0
=> x.(x + 10) = 0
=> x = 0 hoặc x = -10
\(f\left(x\right)=x^4-10x^2+9\)
Xét \(f\left(x\right)=x^4-10x^2+9=0\)
\(x^4-x^2-9x^2+9=0\)
\(x^2.\left(x^2-1\right)-9.\left(x^2-1\right)=0\)
\(\left(x^2-1\right).\left(x^2-9\right)=0\)
\(\Rightarrow x^2-1=0\)HOẶC \(x^2-9=0\)
\(x^2=1\)HOẶC \(x^2=9\)
Vậy \(x\in-3;-1;1;3\)thì \(f\left(x\right)=x^4-10x^2+9=0\)
Câu 1 :
Ta có: \(f\left(x\right)=0\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x+1\right)^2-4=0\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)
Vậy \(x\in\left\{-5;3\right\}\)là nghiệm của đa thức f(x)
Câu 2 :
\(q\left(x\right)=x^2-10x+29\)
\(=\left(x-5\right)^2+4\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-5\right)^2+4\ge4\forall x\)
Vậy đa thức trên ko có nghiệm
dễ mà
câu 1
f(x)=x^2+2x-3
ta có f(x)=0
suy ra x^2+2x-3=0
tương đương:x^2-x+3x-3=0
tương đương:x(x-1)+3(x-1)=0
tương đương: (x-1)(x+3)=0
tương đương: x-1=0 x=1
x+3=0 x=-3
vậy đa thức f(x) có hai nghiệm là 1 và -3
câu 2: x^2-10x+29
tương đương: x^2-5x-5x+25+4
tương đương: x(x-5)-5(x-5)+4
tương đương: (x-5)(x-5)+4
tương đương: (x-5)^2+4
vì (x-5)^2> hoặc bằng 0 với mọi x
4>0
suy ra x^2-10x+29 vô nghiệm
Ta có: x2 - 10x + 6 = x2 - 10x + 25 - 19 = (x - 5)2 - 19
Để x2 - 10x + 6 = 0 thì (x - 5)2 - 19 = 0
=> (x - 5)2 = 19 \(\Rightarrow x-5=\sqrt{19}\approx4,36\)
\(\Rightarrow x\approx4,36+5\)\(\Rightarrow x\approx9,36\)