Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
9-5n chia hết cho n => 9 chia hết cho n => n thuộc Ư(9)={-9;-3;-1;1;3;9}
mà n thuộc N => n=1;3;9
11:
n^3-n^2+2n+7 chia hết cho n^2+1
=>n^3+n-n^2-1+n+8 chia hết cho n^2+1
=>n+8 chia hết cho n^2+1
=>(n+8)(n-8) chia hết cho n^2+1
=>n^2-64 chia hết cho n^2+1
=>n^2+1-65 chia hết cho n^2+1
=>n^2+1 thuộc Ư(65)
=>n^2+1 thuộc {1;5;13;65}
=>n^2 thuộc {0;4;12;64}
mà n là số tự nhiên
nên n thuộc {0;2;8}
Thử lại, ta sẽ thấy n=8 không thỏa mãn
=>\(n\in\left\{0;2\right\}\)
a) n + 4 chia hết cho n
vì n chia hết cho n =>để n + 4 chia hết cho n thì 4 phải chia hết cho n
=>n Є {1;2;4}
b/ 3n + 7 chia hết cho n
vì 3n chia hết cho n => để 3n + 7 chia hết cho n thì 7 phải chia hết cho n
=>n Є {1;7}
\(\left(3n-2\right)⋮\left(n+1\right)\Leftrightarrow\left(3n+3-5\right)⋮\left(n+1\right)\Leftrightarrow\left[3\left(n+1\right)-5\right]⋮\left(n+1\right)\)
mà [3(n+1)]\(⋮\)(n+1) => 5\(⋮\)(n+1) <=> \(n+1\inƯ\left(5\right)=\){-5;-1;1;5} <=>n\(\in\){-6;-2;0;4}
câu 2 làm tương tự
\(n^2-5n+3=\left(4-n\right)\left(-n+1\right)-1\)
\(\left(4-1\right)\left(-n+1\right)⋮\left(4-n\right)\Rightarrow-1⋮\left(4-n\right)\)
4-n | -1 | 1 |
n | 5 | 3 |
Vậy ..
\(3^{5n+2}+3^{5n+1}-3^{5n}=3^{5n}\left(3^2+3-1\right)=11.3^{5n}⋮11\)
n 2 ‐ 5n + 10 chia hết cho n ‐ 3 => n 2 ‐ 3n ‐ 2n + 6 + 4 chia hết cho n ‐ 3 => n.﴾n ‐ 3﴿ ‐ 2.﴾n ‐ 3﴿ + 4 chia hết cho n ‐ 3 => ﴾n ‐ 3﴿.﴾n ‐ 2﴿ + 4 chia hết cho n ‐ 3 Do ﴾n ‐ 3﴿.﴾n ‐ 2﴿ chia hết cho n ‐ 3 => 4 chia hết cho n ‐ 3 Mà n thuộc N => n ‐ 3 > hoặc = ‐3 => n ‐ 3 thuộc {‐2 ; ‐1 ; 1 ; 2 ; 4} => n thuộc {1 ; 2 ; 4 ; 5 ; 7}
n2 - 5n + 10 chia hết cho n - 3
=> n2 - 3n - 2n + 6 + 4 chia hết cho n - 3
=> n.(n - 3) - 2.(n - 3) + 4 chia hết cho n - 3
=> (n - 3).(n - 2) + 4 chia hết cho n - 3
Do (n - 3).(n - 2) chia hết cho n - 3 => 4 chia hết cho n - 3
Mà n thuộc N => n - 3 > hoặc = -3
=> n - 3 thuộc {-2 ; -1 ; 1 ; 2 ; 4}
=> n thuộc {1 ; 2 ; 4 ; 5 ; 7}