Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 51 có tận cùng là 1 nên 51n có tận cùng 1 (...1)
Xét: 471=...7 (1)
472=...9 (2)
473=...3 (3)
474=...1 (1)
............
47102=...9 (3)
A= 51n+47102= ...1 +...9=...0
Vậy số tận cùng của A là 0 nhé
Ta có:51n luôn có chữ số tận cùng là 1 (1)
47102=474.25+2=474.25.472
Vì 474 có chữ số tận cùng là 1 =>(474)25 có chữ số tận cùng là 1
472 có chữ số tận cùng là 9
=>474.25.472 có tận cùng là chữ số 9 hay 47102 có chữ số tận cùng là 9 (2)
Từ (1) và (2) suy ra:
A=51n+47102 có chữ số tận cùng là 0
Vậy A=51n+47102 có chữ số tận cùng là 0
Ta có : 3n + 2 - 2n + 2 + 3n - 2n
= (3n + 2 + 3n) - (2n + 2 + 2n)
= 3n(32 + 1) - 2n - 1(23 + 2)
= 3n.10 - 2n - 1.10
= 10.(3n - 2n - 1)
Mà 3n - 2n - 1 thuộc Z
Nên 10.(3n - 2n - 1) chia hết cho 10
Vậy 3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10
Ta có : \(\frac{3x-y}{x+y}=\frac{3}{4}\)
\(\Rightarrow4\left(3x-y\right)=3\left(x+y\right)\)
\(\Rightarrow12x-4y=3x+3y\)
\(\Rightarrow12x-3x=3y+4y\)
\(\Leftrightarrow9x=7y\)
\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)
\(4^{n+3}+4^{n+2}-4^n\)
\(=4^n.64+4^n.16-4^n\)
\(=4^n\left(64+16-1\right)\)
\(=4^n.81\)
Với n = 2k+1
=> 42k+1.81=(...4)
Với n = 2k
=> 16k.81=(...6)
a) \(9\cdot3^3\cdot\frac{1}{81}\cdot3^2=3^2\cdot3^3\cdot\left(\frac{1}{3}\right)^43^2=3^7\cdot\frac{1}{3^4}=3^3\)
b) \(4\cdot2^5:\left(2^3\cdot\frac{1}{16}\right)=2^2\cdot2^5:\left(2^3\cdot\frac{1}{2^4}\right)=2^7:\frac{1}{2}=2^8\)
c) \(3^2\cdot2^5\cdot\left(\frac{2}{3}\right)^2=3^2\cdot2^5\cdot\frac{2^2}{3^2}=2^7\)
d) \(\left(\frac{1}{3}\right)^2\cdot\frac{1}{3}\cdot9^2=\frac{1}{3^2}\cdot\frac{1}{3}\cdot3^4=\frac{1}{3^3}\cdot3^4=3\)
a)9.33.\(\frac{1}{81}\).32
=32.33.34.\(\frac{1}{3^4}\).32
=311.\(\frac{1}{3^4}\)
=37
b)4.25:(\(2^3.\frac{1}{16}\))
=22.25:(\(2^3.\frac{1}{2^4}\))
=27:\(\frac{2^3}{2^4}\)
=27.\(\frac{2^4}{2^3}\)
=\(\frac{2^{11}}{2^3}\)
=28
c)32.25.\(\left(\frac{2}{3}\right)^2\)
=32.25.\(\frac{2^2}{3^2}\)
=\(\frac{3^2.2^5.2^2}{3^2}\)
=27
d)\(\left(\frac{1}{3}\right)^2.\frac{1}{3}.9^2\)
=\(\frac{1^2}{3^2}.\frac{1}{3}.\left(3^2\right)^2\)
=\(\frac{1^2}{3^2}.\frac{1}{3}.3^4\)
=\(\frac{1^2}{3^2}.\frac{3^4}{3}\)
=\(\frac{1^2}{3^2}.3^3\)
=3
a: \(=3^2\cdot3^5:3^4=3^{2+5-4}=3^3\)
b: \(=2^3\cdot2^4:\left(\dfrac{8}{16}\right)=\dfrac{2^7}{2}=2^6\)
c: \(=3^7\cdot3^3=3^{10}\)
d: \(=5^3\cdot5^2\cdot\dfrac{1}{5^4}=5^1\)