Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :2n+1=2n-6+7
mà 2n-6 chia hết cho n-3
=>7 chia hết cho n-3
=>n-3 thuộc Ư(7)={1;7}
Nếu n-3=1 thì n=4
Nếu n-3=7 thì n=10
Vậy n thuộc {4;10}
*:chia hết cho 2n-3
Vì 3n+1 chia hết cho 2n-3=>2(3n+1)hay6n+2 chia hết cho 2n-3 (1)
Vì 2n-3 chia hết cho 2n-3 =>3(2n-3) hay 6n-9 chia hết cho 2n-3 (2)
Từ (1) và (2) =>(6n+2)-(6n-9) *
=>6n+2-6n+9 *
=>6n-6n+2+9 *
=>0+11 *
=>11 *
2n-3 1 11
n 2 7
Tick mik nha
Potter Harry chép của oOo La Hét Trong Toa Loét oOo chứ gì, giỏi thì giải chi tiết ra giùm mik
a. ta có
3n+3 =3(n+1) luôn chia hết cho n+1 với mọi số tự nhiên n
b. ta có :\(5n+19\text{ chia hết cho 2n+1 thì }10n+38\text{ cũng chia hết cho 2n+1}\)
mà \(10n+38=5\left(2n+1\right)+33\text{ chia hết cho }2n+1\) khi 33 chia hết cho 2n+1
hay \(2n+1\in\left\{1,3,11,33\right\}\Rightarrow n\in\left\{0,1,5,16\right\}\)
Phân tích A thành nhân tử được
\(A=n\left(n+1\right)\left(n+2\right)\)
Từ đây việc chứng minh còn lại là khá dễ.
\(a,\text{ }4n+2⋮2n+6\)
\(\Rightarrow4n+2+10-10⋮2n+6\)
\(\Rightarrow4n+12-10⋮2n+6\)
\(\Rightarrow2\left(2n+6\right)-10⋮2n+6\)
\(2\left(2n+6\right)⋮2n+6\)
\(\Rightarrow10⋮2n+6\)
\(\Rightarrow2n+6\inƯ\left(10\right)\)
\(\Rightarrow2n+6\in\left\{-1;1;-2;2;-5;5;-10;10\right\}\)
\(\Rightarrow2n\in\left\{-7;-5;-8;-4;-11;-1;-16;4\right\}\)
\(\Rightarrow n=2\)
b, 3n chia hết cho n
=> 38 chia hết cho n
=> n là ước tự nhiên của 38
Tôi đồng ý như cách làm của bạn Nguyễn Phương Uyên