Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = 1 + 22 + 24 + ... + 22016
=> 4A = 22 + 24 + ... + 22018
=> 4A - A = 22018 - 1
=> 3A = 22018 -1
Theo bài ra : 3A + 1 = 2n
=> 22018 - 1 + 1 = 2n
=> 22018 = 2n
=> n = 2018
b) Ta có :
3n + 1 chia hết cho 2n - 3
=> 6n - 3n + 1 chia hết cho 2n - 3
=> 3.(2n-1) + 1 chia hết cho 2n - 3
=> 3 chia hết cho 2n - 3 hay 2n - 3 \(\in\) Ư(3) = {1;3}
=> 2n \(\in\) {4;6}
=> n \(\in\) {2;3}
1) Gọi tổng của 6 số tự nhiên đó là \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)
Ta có \(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)
\(=6a+15\)
\(=6.a+12+3\)
\(=6.\left(x+2\right)+3\)
Vì \(6.\left(x+2\right)⋮6\)nên \(6.\left(x+2\right)+3\)chia 6 dư 3
Vậy tổng của 6 số tự nhiên liên tiếp không chia hết cho 6
2) Ta có 3 là số lẻ nên 32018 là số lẻ
11 là số lẻ nên 112017 là số lẻ
Do đó 32018-112017là số chẵn nên chia hết cho 2
3)\(n+4⋮n\)
có \(n⋮n\)nên để \(n+4⋮n\)thì \(4⋮n\)
\(\Rightarrow n\inƯ\left(4\right)=\left\{-1;1;-2;2;-4;4\right\}\)
4)\(3n+7⋮n\)
có \(3n⋮n\)nên để \(3n+7⋮n\)thì \(7⋮n\)
\(\Rightarrow n\inƯ\left(7\right)=\left\{-1;1;-7;7\right\}\)
\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}\cdot10+2^{n+2}\cdot3\)
\(=3^n\cdot3\cdot10+2^{n+1}\cdot2\cdot3\)
\(=3^n\cdot30+2^{n+1}\cdot6\)
\(=6\left(3^n\cdot5+2^{n+1}\right)⋮6\left(đpcm\right)\)
a) 53.(-15)+(-15).47
=53.[(-15)+(-15)].47
=53.(-30).47
=-1590.47
=-74730