K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2018

nhật xét: vt lẻ => vp lẻ => x,y,z lẻ hết
*) nếu x,y,z >3
=> xyz > 9x,9y,9z, 27
=> 3xyz > 9(x+y+z)
=> 3xyz > 2(x+y+z) +9 (vì x+y+z >9)
Phương trình vô nghiệm

*) x= 1, y,z> 3
<=> 2.(y+z) + 11 = 3yz
ta có: (y-1).(z-1) >0
=> yz +1 > (y+z)
.... 2yz + 12 > 2.(y+z) +11
.....2yz + 12 > 3yz
=> yz < 12 => vn ( z,y >= 5)
tương tự y or z =1 ( Phương trình vô nghiệm)
*) x=y=1
=> 2.(2+z) +9 = 3z
=> z= 13
tương tự x=13, y=13 khi 2 cái còn lại =1
vậy nghiệm (x;y;z) = (1;1;13)

17 tháng 11 2017

Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân

Xem tui giải đúng không nha

Xin avt1536386_60by60.jpgWrecking Ball nhận xét

17 tháng 11 2017

Đỗ Đức Đạt cop trên Yahoo

16 tháng 1 2022

y8 nha

16 tháng 1 2022

Kết quả là ra y8 nha bạn 

6 tháng 11 2019

=>(x+y)^3-3xy(x+y)+z^3-3xyz=1

=>(x+y)^3+z^3-[3xy(x+y)+3xyz]=1

=>(x+y+z)[(x+y)^2-(x+y)z+z^2]-3xy(x+y+z)=1

=>(x+y+z)(x^2+y^2+z^2+2xy-xz-yz-3xy)=1

=>(x+y+z)(x^2+y^2+z^2-xy-yz-zx)=1

=>(x+y+z)(2x^2+2y^2+2z^2-2xy-2yz-2zx)=2

=>(x+y+z)[(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)]=2

=>(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]=2

Có x+y+z;(x-y)^2+(y-z)^2+(z-x)^2 thuộc Z vì x,y nguyên

Mà (x-y)^2+(y-z)^2+(z-x)^2 >=0

Nên phân tích 2 thành tích 2 số nguyên mà 1 số lớn hơn hoặc bằng 0 ta có:

2=1. 2

=> x+y+z=2 và  (x-y)^2+(y-z)^2+(z-x)^2 =1

+)Nếu (x-y)^2+(y-z)^2+(z-x)^2 =1

Phân tích 1 thành tổng 3 scp có 1=0+0+0

Xét 3 trường hợp rồi tự làm nốt

+)Nếu x+y+z=2 

21 tháng 9 2015

Áp dụng hằng đẳng thức \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\) với \(a=x,b=-y,c=-z\) ta được \(x^3-y^3-z^3-3xyz=\left(x-y-z\right)\left(x^2+y^2+z^2+xy-yz+zx\right)\) Thành thử \(x=y+z\)  hoặc \(x^2+y^2+z^2+xy-yz+zx=0.\) Vì \(x,y,z\)  là các số nguyên dương nên \(x^2+y^2+z^2+xy-yz+zx>x^2+z^2-xz\ge xz>0.\) Suy ra \(x=y+z\). Vì \(x^2=2\left(y+z\right)\to x^2=2x\to x=2\to y+z=2\to y=z=1.\)  (Vì các số \(x,y,z\) nguyên dương).

Vậy \(\left(x,y,z\right)=\left(2,1,1\right).\) 

26 tháng 4 2017

Do vai trò của x,y,z là như nhau nen giả sử z ≥ y ≥ x ≥ 1 

Ta sẽ thử trực tiếp một vài trường hợp: 

Nếu x = 1 thì 1/y + 1/z = 0 ( vô nghiệm) 

Nếu x = 2 thì 1/y + 1/z = 1/2 <=> 2y + 2z = yz <=> (y - 2)(z - 2) = 4 

Mà :0 ≤ y - 2 ≤ z - 2 và (y- 2), (z - 2) phải là ước của 4 

Do đó ta có các trường hợp: 

{ y - 2 = 1```````{ y = 3 
{ z - 2 = 4 <=>{ z = 6 

{ y- 2 = 2````````{ y = 4 
{ z - 2 = 2 <=>{ z = 4 

Nếu x = 3 thì 1/y + 1/z = 2/3 

+ Nếu y = 3 thì z = 3 

+ Nều y ≥ 4 thì 1/y + 1/z ≤ 1/4 + 1/4 = 1/2 < 1/3 

=> phương trình vô nghiệm 

Nếu x = 4 thì 1/x + 1/y + 1/z ≤ 1/4 + 1/4 + 1/4 = 3/4 < 1 

=>pt vô nghiệm 

Vậy tóm lại phương trình đã cho có 10 nghiệm (bạn tự liệt kê)

28 tháng 1 2018

bạn ơi đề khó nhìn vậy  

28 tháng 1 2018
bạn giúp mk vs đk k bạn
27 tháng 9 2015

x=1

y=2

z=3

hay ngược lại hay .......