Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
#) Giải
Giả sử tồn tại x, y, z thỏa mãn đk đầu bài => 1 / x + 1 / y = 1 / z (x, y, z ≠ 0)
=> z(x + y) = xy
Không thể có |z| > 1 vì lúc đó z có ít nhất 1 ước nguyên tố p ≥ 2 => p phải là ước của x hoặc y, vô lý vì (x, z) = (y, z) = 1. Vậy z = -1, 1
Với z = -1 => -(x + y) = xy => (x + 1)(y + 1) = 1 => x + 1 = -1, y + 1 = -1
=> x = y = -2 => x, y có chung ước 2, vô lý vì (x, y) = 1
Với z = 1 => x + y = xy => (x - 1)(y - 1) = 1
=> x - 1 = 1 và y - 1 = 1 => x = y = 2, vô lý vì (x, y) = 1
Vậy không tồn tại x, y, z thỏa đk bài toán
~ Hok tốt ~
kham khảo ở đây nha
Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
vào thống kê hỏi đáp của mình nhấn zô chữ xanh trong câu trả lời này
hc tốt ~:B~
Do vai trò của x,y,z là như nhau nen giả sử z ≥ y ≥ x ≥ 1
Ta sẽ thử trực tiếp một vài trường hợp:
Nếu x = 1 thì 1/y + 1/z = 0 ( vô nghiệm)
Nếu x = 2 thì 1/y + 1/z = 1/2 <=> 2y + 2z = yz <=> (y - 2)(z - 2) = 4
Mà :0 ≤ y - 2 ≤ z - 2 và (y- 2), (z - 2) phải là ước của 4
Do đó ta có các trường hợp:
{ y - 2 = 1```````{ y = 3
{ z - 2 = 4 <=>{ z = 6
{ y- 2 = 2````````{ y = 4
{ z - 2 = 2 <=>{ z = 4
Nếu x = 3 thì 1/y + 1/z = 2/3
+ Nếu y = 3 thì z = 3
+ Nều y ≥ 4 thì 1/y + 1/z ≤ 1/4 + 1/4 = 1/2 < 1/3
=> phương trình vô nghiệm
Nếu x = 4 thì 1/x + 1/y + 1/z ≤ 1/4 + 1/4 + 1/4 = 3/4 < 1
=>pt vô nghiệm
Vậy tóm lại phương trình đã cho có 10 nghiệm (bạn tự liệt kê)
x+y+z=xyz+1
Giả sử x lớn hơn =y lớn hơn =z
=> 3x> xyz+1 >xyz
=> 3> yz
do y,z nguyên dương nnee tìm đc y,z