\(x^3+y^3+z^3-3xyz=1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2019

=>(x+y)^3-3xy(x+y)+z^3-3xyz=1

=>(x+y)^3+z^3-[3xy(x+y)+3xyz]=1

=>(x+y+z)[(x+y)^2-(x+y)z+z^2]-3xy(x+y+z)=1

=>(x+y+z)(x^2+y^2+z^2+2xy-xz-yz-3xy)=1

=>(x+y+z)(x^2+y^2+z^2-xy-yz-zx)=1

=>(x+y+z)(2x^2+2y^2+2z^2-2xy-2yz-2zx)=2

=>(x+y+z)[(x^2-2xy+y^2)+(y^2-2yz+z^2)+(z^2-2zx+x^2)]=2

=>(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]=2

Có x+y+z;(x-y)^2+(y-z)^2+(z-x)^2 thuộc Z vì x,y nguyên

Mà (x-y)^2+(y-z)^2+(z-x)^2 >=0

Nên phân tích 2 thành tích 2 số nguyên mà 1 số lớn hơn hoặc bằng 0 ta có:

2=1. 2

=> x+y+z=2 và  (x-y)^2+(y-z)^2+(z-x)^2 =1

+)Nếu (x-y)^2+(y-z)^2+(z-x)^2 =1

Phân tích 1 thành tổng 3 scp có 1=0+0+0

Xét 3 trường hợp rồi tự làm nốt

+)Nếu x+y+z=2 

16 tháng 1 2022

y8 nha

16 tháng 1 2022

Kết quả là ra y8 nha bạn 

6 tháng 12 2017

1/ Ta chứng minh với \(x>6\)thì \(10.2^x>13x^2\) cái này dùng quy nạp chứng minh được:

Từ đây ta xét với \(x>6\)thì

\(\Rightarrow\hept{\begin{cases}10.2^6-13x^2>0\\10-3x< 0\end{cases}}\)

\(\Rightarrow\)Phương trình vô nghiệm.

Giờ chỉ cần kiểm tra \(x=1;2;3;4;5;6\) xem cái nào thỏa mãn nữa là xong.

6 tháng 12 2017

2/ \(3^x+1=\left(y+1\right)^2\)

\(\Leftrightarrow3^x=y\left(y+2\right)\)

Với \(y=1\)

\(\Rightarrow x=1\)

Với \(y>1\)

Với \(y⋮3\)\(\Rightarrow y+2⋮̸3\)

Với \(y+2⋮3\)\(\Rightarrow y⋮̸3\)

Vậy \(x=1,y=1\)

16 tháng 1 2022

Bó tay. com

17 tháng 1 2022
Ko biết sorry
11 tháng 9 2020

Hệ \(\hept{\begin{cases}x^3+y^3+z^3=3\\x+y+z=3\end{cases}}\)

Ta có : x + y + z = 3

<=> x + y = 3 - z

<=> (x + y)^3 = (3 - z)^3

<=> x^3 + 3x^2y + 3xy^2 + y^3 = 27 - 27z + 9z^2 - z^3

<=> (x^3 + y^3 + z^3) + 3xy(x + y) + 9z(3 - z) = 27

<=> 3 + 3xy(3 - z) + 9z(3 - z) = 27

<=> 3xy(3 - z) + 9z(3 - z) = 24

<=> (3 - z)(xy + 3z) = 8 (*)

Vì x,y,z nguyên nên (*) tương tương với các hệ sau:

{ 3 - z = 8 => z = - 5 => x + y = 3 - z = 8

{ xy + 3z = 1 => xy = 1 - 3z = 16

=> x, y là nghiệm của pt: t^2 - 8t +16 = 0 <=> (t - 4)^2 = 0 <=> x = y = 4

{ 3 - z = - 8 => z = 11 => x + y = 3 - z = -8

{ xy + 3z = -1 => xy = - 1 - 3z = - 34

=> x, y là nghiệm của pt: t^2 + 8t - 34 = 0 => loại vì x, y không nguyên

{ 3 - z = 4 => z = -1 => x + y = 3 - z = 4

{ xy + 3z = 2 => xy = 2 - 3z = 5

=> x, y là nghiệm của pt: t^2 - 4t + 5 = 0 => vô nghiệm

{ 3 - z = - 4 => z = 7 => x + y = 3 - z = - 4

{ xy + 3z = - 2 => xy = - 2 - 3z = -23

=> x, y là nghiệm của pt: t^2 + 4t - 23 = 0 => loại vì x, y không nguyên

{ 3 - z = 2 => z = 1 => x + y = 3 - z = 2

{ xy + 3z = 4 => xy = 4 - 3z = 1

=> x, y là nghiệm của pt: t^2 - 2t +1 = 0 => x = y = 1

{ 3 - z = - 2 => z = 5 => x + y = 3 - z = - 2

{ xy + 3z = - 4 => xy = - 4 - 3z = - 19

=> x, y là nghiệm của pt: t^2 + 2t -19 = 0 => loại vì x, y không nguyên

{ 3 - z = 1 => z = 2 => x + y = 3 - z = 1

{ xy + 3z = 8 => xy = 8 - 3z = 2

=> x, y là nghiệm của pt: t^2 - t + 2 = 0 => vô nghiệm

{ 3 - z = - 1 => z = 4 => x + y = 3 - z = -1

{ xy + 3z = - 8 => xy = - 8 - 3z = - 20

=> x, y là nghiệm của pt: t^2 + t - 20 = 0 => x = - 5; y = 4 hoặc x = 4; y = -5

Kết luận: Vậy tập nghiệm nguyên của hệ là S ={(x,y,z)} = {(1,1,1);(4,4,-5);(-5,4,4);(4,-5,4)}