\(\left(x+y\right)^2=40x+1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2020

\(x^2=y\left(y+1\right)\left(y+2\right)\left(y+3\right)\)

\(\Leftrightarrow x^2=\left(y^2+3y\right)\left(y^2+3y+2\right)\)

Đặt \(y^2+3y=t\Rightarrow x^2=t\left(t+2\right)\Leftrightarrow x^2-\left(t^2+2t+1\right)=-1\)

\(\Leftrightarrow x^2-\left(t+1\right)^2=-1\)

\(\Leftrightarrow\left(x-t-1\right)\left(x+t+1\right)=-1\)

Xét ước thông thường ;)

7 tháng 10 2017

nhân cái đầu với cái cuối

10 tháng 6 2017

(x+y)2 = (x+y)(x-y)

<=>x2 + 2xy + y2 = x2 - y2

<=>2y2 + 2xy = 0

<=>2y(x+y) = 0

<=> y = 0 hoặc x + y = 0

<=>y = 0 hoặc y = -x

11 tháng 6 2017

x + y = 0 hoặc y = 0

11 tháng 6 2017

kết quả là 

  y=0

    đs...

20 tháng 7 2017

a) Thay x=2 vào phương trình ta có:

(2.2+1)(9.2+2k)+5(2+2)=40

5(18+2k)+20=40

90+10k=20

10k=-70

k=-7

b) Thay x=1 vào phương trình ta có:

2(2.1+1)+18=3(1+2)(2.1+k)

2+2+18=(3+6)(2+k)

22=20+18k

2=18k

k=1/9

19 tháng 4 2020

b) chia cả 2 vế cho xyz>0 ta được: \(\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{9}{xyz}=3\)

không mất tính tổng quát, giả sử: \(x\ge y\ge z\ge1\). Ta có:

\(3=\frac{2}{yz}+\frac{2}{zx}+\frac{2}{xy}+\frac{9}{xyz}\le\frac{15}{z^3}\Rightarrow z^3\le5\Rightarrow z=1\)

\(z=1\Rightarrow2x+2y+11=3xyz\Rightarrow3=\frac{2}{y}+\frac{2}{x}+\frac{1}{xy}\le\frac{15}{y^2}\Rightarrow y^2\le5\)

\(\Rightarrow\orbr{\begin{cases}y^2=1\\y^2=4\end{cases}\Leftrightarrow\orbr{\begin{cases}y=1;x=1\\y=2;x=\frac{15}{4}\end{cases}}}\)

ĐCĐK và kết luận

Vậy (1;1;13);(13;1;1);(1;13;1)

6 tháng 2 2019

\(y\left(x-1\right)=x^2+2\Leftrightarrow y\left(x-1\right)-x^2+1=3\Leftrightarrow y\left(x-1\right)-\left(x-1\right)\left(x+1\right)=3\)

\(\Leftrightarrow\left(x-1\right)\left(y-x-1\right)=3=1.3=3.1=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)\)

Phương pháp: Phân tích đa thức thành nhân tử, VP ko nhất thiết phải bằng 0 (vì đây là PT nghiệm nguyên)

Bạn tự xét tiếp từng trường hợp nhé.

Chúc bạn học tốt, năm mới vui vẻ!

4 tháng 7 2017

a) Để cho \(x=-3\) là nghiệm của phương trình \(f\left(x,y\right)=0\) điều kiện là :

\(\left(-6-3y+7\right)\left(-9+2y-1\right)=0\)

Phương trình tích