Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x+y)2 = (x+y)(x-y)
<=>x2 + 2xy + y2 = x2 - y2
<=>2y2 + 2xy = 0
<=>2y(x+y) = 0
<=> y = 0 hoặc x + y = 0
<=>y = 0 hoặc y = -x
vc đề nhức nhách thật mới lớp 8 đã có pt 2 ẩn r =)) sao giải dc hệ phương trình còn giải dc chứ xem có sai đề k
Dễ thấy vế trái chia hết cho 5 với y >0
Vậy y=0 , giải ra x
Học tốt!!!!!!!
Ta có : 2x;2x+1;2x+2;2x+3;2x+4 là 5 số tự nhiên liên tiếp.
=> 2x(2x+1)(2x+2)(2x+3)(2x+4)⋮5
Mặt khác ƯCLN ( 2x; 5)=1 nên (2x+1)(2x+2)(2x+3)(2x+4)⋮5
+ Với y≥1 thì VP= [(2x+1)(2x+2)(2x+3)(2x+4)−5y]⋮5
Mà VP= 11879≡4(mod5)
Suy ra phương trình vô nghiệm
+Với y=0 ta có :
(2x+1)(2x+2)(2x+3)(2x+4)−50=11879
<=> (2x+1)(2x+2)(2x+3)(2x+4)=11880
<=> (2x+1)(2x+2)(2x+3)(2x+4)=9.10.11.12
<=> 2x+1=9
<=> 2x=8
<=> 2x=23
<=>x=3
Vậy phương trình đã cho có 1 nghiệm duy nhất (x; y)=(3; 0)
\(y\left(x-1\right)=x^2+2\Leftrightarrow y\left(x-1\right)-x^2+1=3\Leftrightarrow y\left(x-1\right)-\left(x-1\right)\left(x+1\right)=3\)
\(\Leftrightarrow\left(x-1\right)\left(y-x-1\right)=3=1.3=3.1=\left(-1\right)\left(-3\right)=\left(-3\right)\left(-1\right)\)
Phương pháp: Phân tích đa thức thành nhân tử, VP ko nhất thiết phải bằng 0 (vì đây là PT nghiệm nguyên)
Bạn tự xét tiếp từng trường hợp nhé.
Chúc bạn học tốt, năm mới vui vẻ!
\(\Leftrightarrow x^y+y^x+x^3+y^3+1+3\left(x+y\right)\left(x+1\right)\left(y+1\right)=x^3+y^3+1+z\)
\(\Leftrightarrow x^y+y^x+3\left(x+y\right)\left(y+1\right)\left(x+1\right)=z\)
Do \(VT>3\Rightarrow z>3\Rightarrow z\) lẻ đồng thời z không chia hết cho 3
Nếu \(x;y\) đều lẻ hoặc đều chẵn \(\Rightarrow VT\) chẵn (không thỏa mãn)
\(\Rightarrow\) x và y có đúng 1 số chẵn, do vai trò của x; y như nhau, giả sử y chẵn \(\Rightarrow y=2\)
\(\Rightarrow x^2+2^x+9\left(x+2\right)\left(x+1\right)=z\)
- Nếu \(x>3\Rightarrow x^2\) chia 3 dư 1, đồng thời do x lẻ \(\Rightarrow x=2k+1\)
\(\Rightarrow2^x=2^{2k+1}=2.4^k\) chia 3 dư 2
\(\Rightarrow x^2+2^x\) chia hết cho 3 \(\Rightarrow VT\) chia hết cho 3 (không thỏa mãn)
\(\Rightarrow x\le3\Rightarrow x=3\Rightarrow z=197\) (thỏa mãn)
Vậy \(\left(x;y;z\right)=\left(3;2;197\right)\)