K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(8x^3-18x^2+x+6\)

\(=8x^3-16x^2-2x^2+4x-3x+6\)

\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)

\(=\left(x-2\right)\left(8x^2-2x-3\right)\)

\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)

\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)

\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)

=> g(x) có 3 nghiệm là

x-2=0 <=> x=2

2x+1=0 <=> x=-1/2

4x-3=0 <=> x=3/4

vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}

b) tự làm đi (mk ko bt làm)

6 tháng 6 2019

a) \(f\left(x\right)=8x^2-6x-2=0\)

\(\Leftrightarrow8x^2-8x+2x-2=0\)

\(\Leftrightarrow8x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(8x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}8x+2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=1\end{cases}}\)

Vậy \(x\in\left\{\frac{-1}{4};1\right\}\)

6 tháng 6 2019

b) \(g\left(x\right)=5x^2-6x+1=0\)

\(\Leftrightarrow5x^2-5x-x+1=0\)

\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=1\end{cases}}\)

Vậy \(x\in\left\{\frac{1}{5};1\right\}\)

16 tháng 5 2017

Trả lời :

1) x2+8x+21

= x^2 + 8x + 16 +5

= (x + 4 )^2 +5 lớn hơn hoặc bằng 5

Vậy giá tri nhỏ nhất của biểu thức bằng 5 khi x +4 =0 hay x=-4

2) f(x) = x^3 +x ^2 +x +1 =0

= (x^3 +x ^2) +(x +1) =0

= x^2 (x + 1 ) + (x +1 ) =0

= (x ^2 +1 )(x +1) =0

Xảy ra hai trường hợp :

x^2 +1=0 hoặc x + 1 =0

mà x^2 +1 >0 nên chỉ x + 1 =0 hay x= -1

Câu 3 gợi ý thôi bạn khai triển ra rồi thu gọn lại .

Học tốt banhqua

16 tháng 5 2017

\(\left(5x+3y\right)^2-\left(3y-1\right)\left(3y+1\right)-\left(4-5x\right)^2-10x\left(3y+4\right)\\ =25x^2+9y^2+30xy-\left(9y^2-1\right)-\left(16-40x+25x^2\right)-\left(30xy+40x\right)\\ =25x^2+9y^2+30xy-9y^2+1-16+40x-25x^2-30xy-40x\\ =\left(25x^2-25x^2\right)+\left(9y^2-9y^2\right)+\left(30xy-30xy\right)+\left(40x-40x\right)+\left(1-16\right)\\ =-15\)

21 tháng 8 2018

b) f(x) = x(x+5) = 0

=>\(\orbr{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}}\)

Vậy x=0 và -5

c) f(x) =x2 + 8x = 0

=>x*(x+8)=0

=>\(\orbr{\begin{cases}x=0\\x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-8\end{cases}}}\)

Vậy x=0 và -8

21 tháng 8 2018

a)\(f\left(x\right)=3\sqrt{2}-x-9\sqrt{2}=0\)

\(\Leftrightarrow-6\sqrt{2}-x=0\Leftrightarrow x=-6\sqrt{2}\)

b)\(f\left(x\right)=x\left(x+5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x+5=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-5\end{cases}}}\)

c)\(f\left(x\right)=x^2+8x=0\)

\(\Leftrightarrow x\left(x+8\right)=0\Leftrightarrow\hept{\begin{cases}x=0\\x+8=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=-8\end{cases}}}\)

d)\(f\left(x\right)=x^2+8x+6=0\)

\(\Leftrightarrow x\left(x+8\right)=-6\)

<=>Khi x=-6 thì x+8=1(ko thõa mãn)

Khi x=-1 thì x+8=6(ko thõa mãn)

Khi x=1 thì x+8=-6(ko thõa mãn)

Khi x=6 thì x+8=-1(ko thõa mãn)

Vậy phương trình đã cho vô nghiệm

e)\(f\left(x\right)=x^2+2018x+2017=0\)

ta có : x2>0 =>2018x+2017=-x2

<=>2018x+x2=-2017

<=>x(2018+x)=-2017

<=>x=-1

vậy phương trình đã cho có ngiệm là S={-1}

i)\(f\left(x\right)=x^2+5=0\)

\(\Leftrightarrow x^2=-5\Leftrightarrow\hept{\begin{cases}x=-\sqrt{5}\\x=\sqrt{5}\end{cases}}\)

bạn tự kết luận nhé

23 tháng 9 2020

a) x2 + 7x + 12 = x2 + 3x + 4x + 12 = x( x + 3 ) + 4( x + 3 ) = ( x + 3 )( x + 4 )

b) x2 - 10x + 16 = x2 - 2x - 8x + 16 = x( x - 2 ) - 8( x - 2 ) = ( x - 2 )( x - 8 )

c) x2 + 6x + 8 = x2 + 2x + 4x + 8 = x( x + 2 ) + 4( x + 2 ) = ( x + 2 )( x + 4 )

d) x2 - 8x + 15 = x2 - 3x - 5x + 15 = x( x - 3 ) - 5( x - 3 ) = ( x - 3 )( x - 5 )

e) x2 - 8x - 9 = x2 + x - 9x - 9 = x( x + 1 ) - 9( x + 1 ) = ( x + 1 )( x - 9 )

f) x2 + 14x + 48 = x2 + 6x + 8x + 48 = x( x + 6 ) + 8( x + 6 ) = ( x + 6 )( x + 8 )

30 tháng 7 2016

8x2-x4+1=0

=> -( x4-8x2+16)+17=0

=> (x2-4)2=17

=> x2-4=\(\sqrt{17}\)

=> x2=\(\sqrt{17}\)+4

=> x=\(\sqrt{\sqrt{17}+4}\)

Không tìm được nghiệm nguyên của đa thức

11 tháng 5 2018

Ta có: 8x2-x4+1=0

Suy ra: 8x2-x4= -1

           8xx-xxxx= -1

           8-xx= -1

          8-x2= -1

             x2=9

Suy ra nghiệm nguyên của đa thức trên là 3 còn nghiệm âm là -3

23 tháng 9 2018

\(x^2-x-12\)

\(=x^2+3x-4x-12\)

\(=x\left(x+3\right)-4\left(x+3\right)\)

\(=\left(x+3\right)\left(x-4\right)\)

4 tháng 9 2023

a,A(\(x\)) = 13\(x^4\) + 3\(x^2\) + 15\(x\) - 8\(x\) - 7 - 7\(x\) + 7\(x^2\) - 10\(x^4\)

A(\(x\)) = (13\(x^4\) - 10\(x^4\)) + (3\(x^2\) + 7\(x^2\)) + (15\(x\) - 8\(x\) - 7\(x\)) - 7

A(\(x\)) = 3\(x^4\) + 10\(x^2\) + 0 - 7

A(\(x\)) = 3\(x^4\) + 10\(x^2\) - 7

B(\(x\)) = -4\(x^4\) - 10\(x^2\) + 10 + 5\(x^4\) - 3\(x\) - 18 + 30 - 5\(x^2\)

B(\(x\)) = (-4\(x^4\) + 5\(x^4\)) - (10\(x^2\) + 5\(x^2\)) - 3\(x\) + (10 + 30 - 18)

B(\(x\)) = \(x^4\) - 15\(x^2\) - 3\(x\)  + 22

b,C(\(x\)) = A(\(x\)) + B(\(x\)) = 3\(x^4\) + 10\(x^2\) - 7 + \(x^4\) - 15\(x^2\) - 3\(x\) + 22

C(\(x\)) = 4\(x^4\)  - (15\(x^2\) - 10\(x^2\)) - 3\(x\) + 22

C(\(x\)) = 4\(x^4\) - 5\(x^2\) - 3\(x\) + 15

c, D(\(x\)) = B(\(x\)) - A(\(x\)) = \(x^4\) - 15\(x^2\) - 3\(x\) + 22 - 3\(x^4\) - 10\(x^2\) + 7

D(\(x\)) = (\(x^4\) - 3\(x^4\)) - (15\(x^2\) + 10\(x^2\)) + (22 + 7)

D(\(x\)) = - 2\(x^4\) - 25\(x^2\) + 29

d, Thay \(x\) = 1 vào C(\(x\)) ta có: C(1) = 4.14 - 5.12 -3.1 + 15 = 11 (xem lại đề bài em nhá)