Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 2x2-x=0
<=>x(2x-1)=o
=>x=0 hoặc x=1/2
2.A(x)4x2-8x+5/2=4(x-1/2)2+1/2
Vì 4(x-1/2)2>=o với mọi x
nên 4(x-1/2)2+1/2>=1/2 với mọi x
Dấu "="xảy ra khi và chỉ khi x-1/2=0<=> x= 1/2
Vậy GTNN của A=1/2 khi x= 1/2
Bài 1:\(2x^2-x=0\Leftrightarrow x\left(2x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}\)
Bài 2:\(A\left(x\right)=\frac{4x^2-8x+5}{2}=\frac{4\left(x^2-2x+1\right)+1}{2}=\frac{4\left(x-1\right)^2+1}{2}=2\left(x-1\right)^2+\frac{1}{2}\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2\Rightarrow A=2\left(x-1\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
=>\(A_{min}=\frac{1}{2}\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(2x^3-8x^2+9x=0\)
\(\Leftrightarrow x\left(2x^2-8x+9\right)=0\)
TH1 : x = 0
TH2 : \(2x^2-8x+9=0\)
Ta có : \(\left(-8\right)^2-4.9.2=64-72< 0\)
Nên pt vô nghiệm
Vậy nghiệm đa thức là x = 0
\(2x^3-8x^2+9x=0\)
\(< =>x\left(2x^2-8x+9\right)=0\)
\(< =>\orbr{\begin{cases}x=0\\2x^2-8x+9=0\left(1\right)\end{cases}}\)
\(\left(1\right)\)ta có : \(\Delta=\left(-8\right)^2-4.2.9=64-72=-8\)
do delta < 0 nên phương trình vô nghiệm
Vậy đa thức chỉ nhận 0 là nghiệm
\(2x^3-8x^2+9x=2x\left(x^2-4x+4,5\right)=2x\left[\left(x-2\right)^2+0,5\right]\)
\(\Rightarrow F\left(x\right)\)có nghiệm duy nhất là 0
Đa thức f(x) có 3 nghiệm
+) f(0) = 2 x 0^3 - 8 x 0^ 2 + 9 x 0
= 0 - 0 + 0
= 0
+)
\(P(x)=(-2x^2-8x).(3x^2+1) = 0 \)
\(3x^2+2 > 0 \Rightarrow -2x^2-8x = 0 \Rightarrow2x(-x-4)=0 \)
\(\Leftrightarrow \begin{cases} 2x=0\\ -x-4 = 0 \end{cases} \)\(\Rightarrow \begin{cases} x=0\\ x=-4 \end{cases} \)
Vậy nghiệm của đa thức \(P(x) =\)\(\left\{0;-4\right\}\)
Đa thức f(x) có nhiều nhất 1 nghiệm . Nghiệm của đa thức f(x) là 0 vì : 2 . 0^3 - 8. 0^2 + 9.0
= 2 . 0 - 8. 0 +0
=0
k nha
2\(x^3\) - 8\(x^2\) + 9\(x\) = 0
\(x\)(2\(x^2\) - 8\(x\) + 9) = 0
\(\left[{}\begin{matrix}x=0\\2x^2-8x+9=0\end{matrix}\right.\)
2\(x^2\) - 8\(x\) + 9 = 0
2\(x^2\) - 4\(x\) - 4\(x\) + 8 + 1 = 0
(2\(x^2\) - 4\(x\)) - (4\(x\) - 8) + 1 = 0
2\(x\)(\(x-2\)) - 4(\(x-2\)) + 1 = 0
2(\(x-2\))(\(x\) - 2) + 1 = 0
2(\(x-2\))2 + 1 = 0 (vô lí) vì (\(x\) - 2)2 ≥ 0 \(\forall\)\(x\) ⇒ 2.(\(x-2\))2 +1 ≥ 1 > 0
Vậy 2\(x^3\) - 8\(x^2\) + 9\(x\) = 0 có nhiều nhất 1 nghiệm và đó là \(x\) = 0
mk bít có bn nghiệm rồi mk muốn pít cách giải để tìm ra các nghiệm
x^2(2x+1)-4(2x+1)
=(x^2-4)(2x+1)
R bn cho 2 cái đấy =0 từ đó tính đc mỗi cái
X có 2 gtri nha
Tự lm nốt
Ta có :
\(2x^3+x^2-8x-4=0\)
\(\Leftrightarrow\left(2x^3+4x^2\right)-\left(3x^2+6x\right)-\left(2x+4\right)=0\)
\(\Leftrightarrow2x^2\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x^2-3x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[\left(2x^2+x\right)-\left(4x+2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(2x+1\right)-2\left(2x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(2x+1\right)=0\)
Ta có các trường hợp :
* \(x+2=0\Leftrightarrow x=-2\)
* \(x-2=0\Leftrightarrow x=2\)
* \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy .....