Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh 12n+1/30n+2 là phân số tối giản thì cần chứng tỏ 12n+1 và 30n+2 nguyên tố cùng nhau
Gọi ƯCLN(12n+1,30n+2)=d (d∈N)
=> 12n+1 chia hết cho d => 5(12n+1) chia hết cho d => 60n+5 chia hết cho d
30n+2 chia hết cho d => 2(30n+2) chia hết cho d => 60n+4 chia hết cho d
=> (60n+5)-(60n+4) chia hết cho d
=> 1 chia hết cho d
=> d∈Ư(1)={1}
=> d=1
=> ƯCLN(12n+1,30n+2)=1
Vậy 12n+1/30n+2 là phân số tối giản
k cho mk nha
giúp e vs các a cj soyeon_Tiểubàng giải
Phương An
Hoàng Lê Bảo Ngọc
Silver bullet
Nguyễn Huy Tú
Nguyễn Như Nam
Hoàng Tuấn Đăng
Nguyễn Trần Thành Đạt
Nguyễn Huy Thắng
Võ Đông Anh Tuấn
a) ĐKXĐ: \(n^3+2n^2+2n+1\ne0\)
\(\Rightarrow\left(n+1\right)\left(n^2+n+1\right)\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}n+1\ne0\\n^2+n+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}n\ne-1\\n^2+n+1\ne0\end{matrix}\right.\)
Mà \(n^2+n+1=\left(n^2+n+\frac{1}{4}\right)+\frac{3}{4}=\left(n+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\) Với mọi giá trị của n thì biểu thức trên lớn hơn 0
\(\Rightarrow n\ne-1\)
b) Ta có: \(n^3+2n^2-1=\left(n+1\right)\left(n^2+n-1\right)\)
Vậy,\(P=\frac{n^3+2n^2+2n+1}{n^3+2n^2-1}=\frac{\left(n+1\right)\left(n^2+n+1\right)}{\left(n+1\right)\left(n^2+n-1\right)}=\frac{n^2+n+1}{n^2+n-1}=1+\frac{2}{n^2-n+1}\)
Để P là phân số tối giản
\(\Leftrightarrow\frac{2}{n^2+n-1}\) là phân số tối giản
\(\Leftrightarrow n^2+n-1⋮̸2\)
Ta có: \(n^2+n=n\left(n+1\right)⋮2\) (vì n và n+1 là 2 số nguyên liên tiếp)
\(\Rightarrow n^2+n-1⋮̸2\)
Như vậy, P là phân số tối giản (điều phải chứng minh).
b: Để N là số nguyên dương thì \(\sqrt{x}-3>0\)
\(\Leftrightarrow x>9\)
mà x là số nguyên
nên \(\left\{{}\begin{matrix}x\in Z\\x>9\end{matrix}\right.\)
a) A = n/3 + n2/2 + n3/6
A = 2n+3n2+n3/6
A = 2n+2n2+n2+n3/6
A = (n+1)(2n+n2)/6
A = n(n+1)(n+2)/6
Vì n(n+1)(n+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và 3
Mà (2;3)=1 => n(n+1)(n+2) chia hết cho 6
Hay A thuộc Z (đpcm)
b) B = n4/24 + n3/4 + 11n2/24 + n/4
B = n4+6n3+11n2+6n/24
B = n(n3+6n2+11n+6)/24
B = n(n3+n2+5n2+5n+6n+6)/24
B = n(n+1)(n2+5n+6)/24
B = n(n+1)(n2+2n+3n+6)/24
B = n(n+1)(n+2)(n+3)/24
Vì n(n+1)(n+2)(n+3) là tích 4 số nguyên liên tiếp nên chia hết cho 8 và 3
Mà (8;3)=1 => n(n+1)(n+2)(n+3) chia hết cho 24
Hay B nguyên (đpcm)
b, Để n\(\in Z\)thì \(\frac{n+2}{2n-4}\in Z\)
\(\Rightarrow\frac{n+2}{2\left(n-2\right)}\in Z\)
\(\Rightarrow\frac{n+2}{n-2}\in Z\)(vì 2\(\in Z\))
\(\Rightarrow\frac{n-2+4}{n-2}=1+\frac{4}{n-2}\in Z\)
\(\Rightarrow\frac{4}{n-2}\in Z\)
\(\Rightarrow4⋮\left(n-2\right)\forall n\)
\(\Rightarrow\left(n-2\right)\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng giá trị sau :
Vậy n\(\in Z\in\left\{3;1;4;-2;6\right\}\)
nhớ tick cho mk nhé