Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4+5\right)\)
\(=\left(a-1\right)a\left(a+1\right)\left(a^2-4\right)+5\left(a-1\right)a\left(a+1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5\left(a-1\right)a\left(a+1\right)⋮5\)
Vì \(\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)⋮5\)( tích 5 số nguyên liên tiếp chia hết cho 5)
và \(5\left(a-1\right)a\left(a+1\right)⋮5\)
=> \(a^5-a⋮5\)
Nếu \(a^5⋮5\)=> a chia hết cho 5
a) Gọi n chẵn là 2a
⇒ n2 = 2a . 2a = 4a2 ⋮ 2
⇒ n chẵn thì n2 chẵn
1. Ta có: a^5 - a = a(a^4 - 1) = a(a² - 1)(a² + 1) = a(a - 1)(a + 1)(a² + 1)
= a(a - 1)(a + 1)(a² - 4 + 5)
= a(a - 1)(a + 1)[ (a² - 4) + 5) ]
= a(a - 1)(a + 1)(a² - 4) + 5a(a - 1)(a + 1)
= a(a - 1)(a + 1)(a - 2)(a + 2) + 5a(a - 1)(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1)
Do (a - 2)(a - 1)a(a + 1)(a + 2) là tích của 5 số nguyên liên tiếp => (a - 2)(a - 1)a(a + 1)(a + 2) chia hết cho 5 mà 5a(a - 1)(a + 1) chia hết cho 5
=> (a - 2)(a - 1)a(a + 1)(a + 2) + 5a(a - 1)(a + 1) chia hết cho 5.
=> a^5 - a chia hết cho 5
Mà a^5 chia hết cho 5 => a chia hết cho 5.
( Nếu a không chia hết cho 5 thì a^5 - a không chia hết cho 5 vì a^5 chia hết cho 5)
1: \(125^3\ge5^x>25^2\)
\(\Leftrightarrow5^4< 5^x\le5^9\)
mà x là số nguyên
nên \(x\in\left\{5;6;7;8;9\right\}\)
2: \(16^3\cdot2\ge2^x>8^3\)
\(\Leftrightarrow2^9< 2^x\le2^{12}\cdot2=2^{13}\)
mà x là số nguyên
nên \(x\in\left\{10;11;12;13\right\}\)
3: \(27^{15}< 3^x< 81^{10}\)
\(\Leftrightarrow3^{45}< x< 3^{40}\)(vô lý)
4: \(27^3\cdot3< 3^x< 243^3\)
\(\Leftrightarrow3^{10}< 3^x< 3^{15}\)
mà x là số nguyên
nên \(x\in\left\{11;12;13;14\right\}\)
1, Đúng
2, Sai ( VD \(\sqrt{3^2}⋮3\) nhưng \(\sqrt{3}⋮̸3\))
-----------HẾT----------------
1/ Giả sử n là số chẵn : 2k
\(\Rightarrow n^2=4k^2\)
Mà 4k2 chẵn (trái vs gt)
=> đpcm
2/Giả sử \(n⋮̸\) 3
\(\Rightarrow n.n⋮̸\) 3
\(\Leftrightarrow n^2⋮̸\) 3(trái gt)
=> đpcm
3/ Giả sử \(a+b< 2\sqrt{ab}\Leftrightarrow a-2\sqrt{ab}+b< 0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2< 0\) (vô lí)
=> đpcm
4/ Giả sử \(x\ne0\Rightarrow x^2\ne0;y\ne0\Rightarrow y^2\ne0\)
\(\Rightarrow x^2+y^2\ne0\) (trái gt)
=> đpcm
Câu 5 bn xem lại đề bài nhé vì nếu x=y=-2 thì x+y+xy= 0\(\ne-1\)
6/ Gọi 2 số thực là a và b
Giả sử \(a=1;b=1\Rightarrow a+b=2\) (trái gt)
=> đpcm
ko thì bn giả sử \(a< 1;b< 1\Rightarrow a+b< 2\) (trái gt) cũng đc
P/s: mk ms hok dạng này nên có sai sót j xin rộng lượng bỏ qua. Đa tạ!
2: \(\Leftrightarrow15n-5⋮5n+2\)
\(\Leftrightarrow15n+6-11⋮5n+2\)
\(\Leftrightarrow5n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-\dfrac{1}{5};-\dfrac{3}{5};\dfrac{9}{5};-\dfrac{13}{5}\right\}\)
3: \(\Leftrightarrow n+5\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{-4;-6;2;-12\right\}\)
Nếu n chẵn
=> n2-1 lẻ
=> không chia hết cho 24 (1)
Nếu n chia hết cho 3
=> n2 chia hết cho 3
=> n2-1 không chia hết cho 3
=> n2-1 không chia hết cho 24 (2)
Từ (1) và (2)
=> đpcm
Ta có : n là số tự nhiên lẻ => n = 2k+1 (\(k\in N^{\text{*}}\))
\(n^2-1=\left(2k+1\right)^2-1=4k^2+4k+1-1=4k\left(k+1\right)\)
Vì k(k+1) là tích của hai số tự nhiên liên tiếp nên chia hết cho 2.
Do đó : 4k(k+1) chia hết cho 2.4=8
* ta có : \(3^n=81\) \(\Leftrightarrow3^n=3^4\Rightarrow n=4\)
* ta có : \(2^3.2^n=64\Leftrightarrow8.2^n=8.2^3\Rightarrow n=3\)
* ta có : \(5.5^{n+1}=625\Leftrightarrow5.5^{n+1}=5.5^3\Rightarrow n+1=3\Leftrightarrow n=2\)