Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2n+15}{n-3}=\frac{2\left(n-3\right)+21}{n-3}=\frac{21}{n-3}\)
\(\Rightarrow n-3\inƯ\left(21\right)=\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Tự lập bang , sai đâu nhắc sửa nha !
a) Đặt \(d=\left(n+3,n+4\right)\)
Suy ra \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}}\Rightarrow\left(n+4\right)-\left(n+3\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
b) Đặt \(d=\left(2n+5,4n+11\right)\)
Suy ra \(\hept{\begin{cases}2n+5⋮d\\4n+11⋮d\end{cases}}\Rightarrow\left(4n+11\right)-2\left(n+5\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
c) Đặt \(d=\left(3n+4,4n+5\right)\)
Suy ra \(\hept{\begin{cases}3n+4⋮d\\4n+5⋮d\end{cases}}\Rightarrow4\left(3n+4\right)-3\left(4n+5\right)=1⋮d\Rightarrow d=1\).
Do đó ta có đpcm.
1) Ta có \(\frac{n}{n-4}=\frac{n-4+4}{n-4}=1-\frac{4}{n-4}\)
Vì \(1\inℤ\Rightarrow\frac{n}{n-4}\inℤ\Leftrightarrow\frac{-4}{n-4}\inℤ\Rightarrow-4⋮n-4\Rightarrow n-4\inƯ\left(-4\right)\)
=> \(n-4\in\left\{1;4-1;-4\right\}\)
=> \(n\in\left\{5;8;3;0\right\}\)
2) Gọi ƯCLN(n ; n + 1) = d
=> \(\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}\Rightarrow n+1-n⋮d\Rightarrow1⋮d\Rightarrow d=1}\)
=> n ; n + 1 là 2 số nguyên tố cùng nhau
=> \(\frac{n}{n+1}\)là phân số tối giản
3) ĐK \(x\ne-2\)
Ta có : \(\frac{2n-3}{n+2}=\frac{2n+4-7}{n+2}=\frac{2\left(n+2\right)-7}{n+2}=2-\frac{7}{n+2}\)
\(\frac{2n-3}{n+2}\)đạt giá trị nhỏ nhất khi \(\frac{7}{n+2}\)lớn nhất
=> n + 2 lớn nhất
mà n thuộc Z
=> n + 2 = 7
=> n = 5
=> GTNN của \(\frac{2n-3}{n+2}\text{ là }1\Leftrightarrow x=5\)
\(\frac{2n-3}{n+2}\)đạt giá trị lớn nhất khi \(\frac{7}{x+2}\)nhỏ nhất
=> x + 2 nhỏ nhất
mà x thuộc z
=> x + 2 = -1
=> x = - 3
=> GTLN của \(\frac{2n-3}{n+2}\text{ là }9\Leftrightarrow x=-3\)
Do đề bài không cho đk của n nên không thể giải theo cách thông thường là lập bảng xét ước được!
ĐK: n khác 6
a) Đặt \(\frac{n+9}{n-6}=k\left(k\inℕ\right)\Rightarrow n=kn-6k-9\)
\(\Leftrightarrow n\left(k-1\right)=6k+9\)
Với k = 1 thì \(0=6+9\) (vô lí)
Với k khác 1 thì chia hai vế cho k - 1 được: \(n=\frac{6k+9}{k-1}\left(k\inℕ\right)\)
b) \(\frac{n+9}{n-6}=\frac{3}{4}\Leftrightarrow n+9=\frac{3}{4}n-\frac{9}{2}\)
Chuyển vế,ta có: \(\frac{1}{4}n=-\frac{27}{2}\Rightarrow n=-54\)
c) \(\frac{n+9}{n-6}=1+\frac{15}{n-6}\).Để p/s tối giản thì \(\frac{15}{n-6}\) tối giản tức là:
\(\Leftrightarrow\left(15;n-6\right)=1\Leftrightarrow n-9⋮1\Leftrightarrow n=k+9\)
Câu c) mmình ko chắc
- Để M là phân số tối giản \(\Rightarrow\)\(n-1\)không chia hết cho \(n-2\)
- Ta có: \(n-1=\left(n-2\right)+1\)
- Để \(n-1\)không chia hết cho \(n-2\)\(\Leftrightarrow\)\(\left(n-2\right)+1\)không chia hết cho \(n-2\)mà \(n-2⋮n-2\)
\(\Rightarrow\)\(1\)không chia hết cho \(n-2\)\(\Rightarrow\)\(n-2\notinƯ\left(1\right)\)\(\Leftrightarrow\)\(n-2\notin\left\{\pm1\right\}\)
+ \(n-2\ne1\)\(\Leftrightarrow\)\(n\ne1+2\)\(\Leftrightarrow\)\(n\ne3\)
+ \(n-2\ne-1\)\(\Leftrightarrow\)\(n\ne-1+2\)\(\Leftrightarrow\)\(n\ne1\)
Vậy để M là phân số tối giản thì \(n\ne3\)và \(n\ne1\)
B1. Ta có: A= \(\frac{4n-1}{2n+3}+\frac{n}{2n+3}=\frac{4n-1+n}{2n+3}=\frac{5n-1}{2n+3}\)
=> 2A = \(\frac{10n-2}{2n+3}=\frac{5\left(2n+3\right)-17}{2n+3}=5-\frac{17}{2n+3}\)
Để A là số nguyên <=> 2A là số nguyên <=> \(\frac{17}{2n+3}\in Z\)
<=> 17 \(⋮\)2n + 3 <=> 2n + 3 \(\in\)Ư(17) = {1; -1; 17; -17}
Lập bảng:
2n + 3 | 1 | -1 | 17 | -17 |
n | -1 | -2 | 7 | -10 |
Vậy ....
Bài 2:
Gọi d là ƯCLN (7n-1; 6n-1) (d thuộc N*)
\(\Rightarrow\hept{\begin{cases}7n-1⋮d\\6n-1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(7n-1\right)⋮d\\7\left(6n-1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}42n-6⋮d\\42n-7⋮d\end{cases}}}\)
=> 42n-7-42n+6 chia hết cho d
=> -1 chia hết cho d
mà d thuộc N* => d=1
=> ƯCLN (7n-1; 6n-1)=1
=> đpcm
a) A = 1 + 22 + 24 + ... + 22016
=> 4A = 22 + 24 + ... + 22018
=> 4A - A = 22018 - 1
=> 3A = 22018 -1
Theo bài ra : 3A + 1 = 2n
=> 22018 - 1 + 1 = 2n
=> 22018 = 2n
=> n = 2018
b) Ta có :
3n + 1 chia hết cho 2n - 3
=> 6n - 3n + 1 chia hết cho 2n - 3
=> 3.(2n-1) + 1 chia hết cho 2n - 3
=> 3 chia hết cho 2n - 3 hay 2n - 3 \(\in\) Ư(3) = {1;3}
=> 2n \(\in\) {4;6}
=> n \(\in\) {2;3}
Gọi d là ước chung của 2n+5 và 2n+3
=> 2n+5 chia hết cho d và 2n+3 chia hết cho d
=> (2n+5)-(2n+3)=2 chia hết cho d => d={1;2}
Do 2n+5 và 2n+3 lẻ => d lẻ => d=1
=> phân số trên tối giản với mọi n
bai toan nay kho qua