Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (n + 2015)(n + 2016) + n2 + n
= (n + 2015)(n + 2015 + 1) + n(n + 1)
Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2
=> (n + 2015)(n + 2015 + 1) chia hết cho 2
n(n + 1) chia hết cho 2
=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2
=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)
1/n+1+1/2014=1+1/2013+1/(n+1)
1/n-1/(N+1)=1/2013-1/2014
1/n*(n+1)=1/(2013*2014)
Do do n=2013
Nho k cho mink nha
\(=>\frac{1}{n}-\frac{1}{n+1}\) \(=\frac{2014}{2013}-\frac{2015}{2014}\)
\(=>\frac{1}{n.\left(n+1\right)}\) \(=\frac{1}{4054182}\)
\(=>n.\left(n+1\right)\) \(=4054182\)
\(=>n=2013\)
Tk mk nhé
mình đã làm ở
https://olm.vn/hoi-dap/question/1282571.html
bạn vào mà tham khảo nhé
k cho mik đi
\(\frac{n-4}{2016}+\frac{n-3}{2015}=\frac{n-2}{2014}+\frac{n-1}{2013}\)
\(\Rightarrow\left(\frac{n-4}{2016}+1\right)+\left(\frac{n-3}{2015}+1\right)=\left(\frac{n-2}{2014}+1\right)+\left(\frac{n-1}{2013}+1\right)\)
\(\Rightarrow\frac{n-4+2016}{2016}+\frac{n-3+2015}{2015}=\frac{n-2+2014}{2014}+\frac{n-1+2013}{2013}\)
\(\Rightarrow\frac{n+2013}{2016}+\frac{n+2013}{2015}=\frac{n+2013}{2014}+\frac{n+2013}{2013}\)
\(\Rightarrow\frac{n+2013}{2016}+\frac{n+2013}{2015}-\frac{n+2013}{2014}-\frac{n+2013}{2013}=0\)
\(\Rightarrow\left(n+2013\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}\right)=0\)
Mà \(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}+\frac{1}{2013}\ne0\)
=> n + 2013 = 0 => n = -2013
Vậy n = -2013
bạn ơi,cách giải của bạn đúng rồi nhưng n-4+2016=n+2012 , mấy số kia cũng thế chứ ạ