K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2017

1)Ta co A=52014-52013+...-5+1

=>5A=52015-52014+...+5

=>6A=52015+1

=>6A-1=52015

=>5n=52015

=>n=2015

9 tháng 2 2023

a)

\(A=5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\)

\(5^2.A=5^2.\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)\)

\(25A=5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\)

\(A+25A=\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)+\left(5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\right)\)

\(26A=5^{22}-1\)

\(A=\dfrac{5^{22}-1}{26}\).

b)

\(26A+1=5^n\)

\(\Leftrightarrow\left(5^{52}-1\right)+1=5^n\)

\(\Leftrightarrow5^{52}=5^n\)

\(\Rightarrow n=52\).

c)

\(A=\left(5^{50}-5^{48}\right)+\left(5^{46}-5^{44}\right)+...+\left(5^6-5^4\right)+\left(5^2-1\right)\)

\(=5^{48}.\left(5^2-1\right)+5^{44}.\left(5^2-1\right)+...+5^4.\left(5^2-1\right)+1.\left(5^2-1\right)\)

\(=5^2.24.\left(5^{46}+5^{42}+...+5^2\right)+24\)

\(=25.4.6.\left(5^{46}+5^{42}+...+5^2\right)+24\)

\(=100.6.\left(5^{46}+5^{42}+...+5^2\right)+24⋮100\)

\(\Rightarrow A⋮100\).