Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng
\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
a) n+6 chia hết cho n
=> n+6 - n chia hết cho n
=> 6 chia hết cho n
=> n \(\in\) {1;2;3;6;-1;-2;-3;-6}
b) 4n+5 chia hết cho n
=> (4n+5) - 4.n chia hết cho n
=> 4n+5 - 4n chia hết cho n
=> 5 chia hết cho n
=> n \(\in\) {1;5;-1;-5}
c) 3n+4 chia hết cho n-1
=> (3n+4) - 3(n-1) chia hết cho n-1
=> 3n+4 - 3n+3 chia hết cho n-1
=> 7 chia hết cho n-1
=> n-1 \(\in\) {1;7;-1;-7}
=> n \(\in\) {2;8;0;-6}
\(a,\text{ }4n+2⋮2n+6\)
\(\Rightarrow4n+2+10-10⋮2n+6\)
\(\Rightarrow4n+12-10⋮2n+6\)
\(\Rightarrow2\left(2n+6\right)-10⋮2n+6\)
\(2\left(2n+6\right)⋮2n+6\)
\(\Rightarrow10⋮2n+6\)
\(\Rightarrow2n+6\inƯ\left(10\right)\)
\(\Rightarrow2n+6\in\left\{-1;1;-2;2;-5;5;-10;10\right\}\)
\(\Rightarrow2n\in\left\{-7;-5;-8;-4;-11;-1;-16;4\right\}\)
\(\Rightarrow n=2\)
b, 3n chia hết cho n
=> 38 chia hết cho n
=> n là ước tự nhiên của 38
a ) Vì 4n - 5 ⋮ n - 7 nên 4.( n - 7 ) + 23 ⋮ n - 7
Vì n - 7 ⋮ n - 7 , để 4.( n - 7 ) + 23 ⋮ n - 7 khi 23 ⋮ n - 7 ⇒ n - 7 ∈ Ư ( 23 ) = { + 1 ; + 23 }
Ta có : n - 7 = 1 ⇒ n = 1 + 7 = 8 ( nhận )
n - 7 = - 1 ⇒ n = - 1 + 7 = 6 ( nhận )
n - 7 = 23 ⇒ n = 23 + 7 = 30 ( nhận )
n - 7 = - 23 ⇒ n = - 23 + 7 = - 16 ( nhận )
Vậy n ∈ { - 16 ; 6 ; 8 ; 30 }
Câu b tương tự
a)Ta có:
\(\frac{4n-5}{n-7}=\frac{4n-14+19}{n-7}=\frac{4\left(n-7\right)+19}{n-7}=\frac{n-7}{n-7}+\frac{19}{n-7}=1+\frac{19}{n-7}\)
Suy ra n-7\(\in\)Ư(19)
Ư(19)là:[1,-1,19,-19]
Ta có bảng sau:
n-7 | 1 | -1 | 19 | -19 |
n | 8 | 6 | 26 | -12 |
Vậy n=8;6;26;-12
a) Theo quy luật ta có: Các số có chữ số tận cùng là 3,7,9 khi nâng lên luỹ thừa bậc 4n ( n thuộc N ) thì chữ số tận cùng là 1
\(\Rightarrow7^{4n}\) có chữ số tận cùng là 1 \(\Rightarrow7^{4n}-1\) có chữ số tận cùng là 0 chia hết cho 5
b) Cũng theo quy luật trên, ta có: \(3^{4n+1}+2=3^{4n}.3+2\) . \(3^{4n}\) có chữ số tận cùng là 1 suy ra \(3^{4n}.3\) có chữ số tận cùng là 3. Do đó: \(3^{4n+1}+2\) có chữ số tận cùng là 3+2=5 chia hết cho 5