Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
Nếu ở trên
không ai giúp được thì bạn hãy lên hoc24.vn nhé Khuất Tuấn Anh
a)Ta có\(3^4\equiv1\left(mod5\right)\Rightarrow3^{4n}\equiv1\left(mod5\right)\)
\(\Rightarrow3^{4n+1}\equiv3\left(mod5\right)\)
\(\Rightarrow3^{4n+1}+2\equiv5\left(mod5\right)\)
\(\Rightarrow3^{4n+1}+2⋮5\)
Vậy\(3^{4n+1}+2⋮5\)
b)Ta có\(2^4\equiv1\left(mod5\right)\Rightarrow2^{4n}\equiv1\left(mod5\right)\Rightarrow2^{4n+1}\equiv2\left(mod5\right)\)
\(\Rightarrow2^{4n+1}+3\equiv5\left(mod5\right)\Rightarrow2^{4n+1}+3⋮5\)
Vậy\(2^{4n+1}+3⋮5\)
c)Ta có\(9^2\equiv1\left(mod10\right)\Rightarrow9^{2n}\equiv1\left(mod10\right)\)
\(\Rightarrow9^{2n+1}\equiv9\left(mod10\right)\Rightarrow9^{2n+1}+1\equiv10\left(mod10\right)\)
\(\Rightarrow9^{2n+1}+1⋮10\)
Vậy\(9^{2n+1}+1⋮10\)
a) 34n + 1 + 2
=(34)n x 3 + 2
= 81n x 3 + 2
= ...1 x 3 + 2
= ...5 chia hết cho 5
b) 24n+1 + 3
= (24)n x 2 + 3
= 16n x 2 + 3
= ...6 x 2 + 3
= ...5 chia hết cho 5
c) 92n + 1 + 1
= (92)n x 9 + 1
= 81n x 9 + 1
=...1 x 9 + 1
= ...0 chia hết cho 10
\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng
\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
a, A= (n+2)^2 + 1
Vì số cp chia 8 dư 0 hoặc 1 hoặc 4 => A=(n+2)^2 + 1 chia 8 dư 1 hoặc 2 hoặc 5
=> A ko chia hết cho 8
b, n lẻ nên n có dạng 2k+1(k thuộc N)
<=> 5^n = 5^2k+1= = 5^2k . 5 = (4+1)^2k . 5 = (Bội của 4 +1) . 5 = Bội của 4 +5 chia 4 dư 1
=> B = 5^n - 1 chia hết cho 4
a) Theo quy luật ta có: Các số có chữ số tận cùng là 3,7,9 khi nâng lên luỹ thừa bậc 4n ( n thuộc N ) thì chữ số tận cùng là 1
\(\Rightarrow7^{4n}\) có chữ số tận cùng là 1 \(\Rightarrow7^{4n}-1\) có chữ số tận cùng là 0 chia hết cho 5
b) Cũng theo quy luật trên, ta có: \(3^{4n+1}+2=3^{4n}.3+2\) . \(3^{4n}\) có chữ số tận cùng là 1 suy ra \(3^{4n}.3\) có chữ số tận cùng là 3. Do đó: \(3^{4n+1}+2\) có chữ số tận cùng là 3+2=5 chia hết cho 5