Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+3+3^2+3^3+...+3^{101}\)
\(3A=3+3^2+3^3+3^4+...+3^{101}\)
\(3A-A=\left(3+3^2+3^3+3^4+...+3^{101}\right)-\left(1+3+3^2+3^3+...+3^{100}\right)\)
\(2A=3^{101}-1\)
\(A=\left(3^{101}-1\right):2\)
Thu gọn tổng sau:
A=1+3+32+33+...+3100
B= 2100-299-298-297-...-22-2
C= 3100-399+398-397-...+32-3+1
a)
Ta có: \(\frac{x+y}{2014}\ne\frac{x-y}{2016}\)
\(\Leftrightarrow2016x+2016y=2014x-2014y\)
\(\Leftrightarrow2x=-4030y\)
\(\Leftrightarrow x=-2015y\)
Thay \(x=-2015y\)vào \(\frac{x+y}{2014}=\frac{xy}{2015}\)ta được:
\(\Leftrightarrow\frac{-2015+y}{2014}=\frac{-2015y}{2015}\)
\(\Leftrightarrow\frac{-2014y}{2014}=\frac{-2015y^2}{2015}\)
\(\Leftrightarrow-y=-y^2\)
\(\Leftrightarrow y-y^2=0\)
\(\Leftrightarrow y\left(1-y\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\1-y=0\end{cases}}\Rightarrow\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Trường hợp \(y=0\):
\(y=0\Rightarrow x.y=-2015.0=0\)
Trường hợp \(y=1\):
\(y=1\Rightarrow x.y=-2015.1=-2015\)
1. Ta có: \(x\left(6-x\right)^{2003}=\left(6-x\right)^{2003}\)
=> \(x\left(6-x\right)^{2003}-\left(6-x\right)^{2003}=0\)
=> \(\left(6-x\right)^{2003}\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}\left(6-x\right)^{2003}=0\\x-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}6-x=0\\x=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=6\\x=1\end{cases}}\)
Bài 2. Ta có: (3x - 5)100 \(\ge\)0 \(\forall\)x
(2y + 1)100 \(\ge\)0 \(\forall\)y
=> (3x - 5)100 + (2y + 1)100 \(\ge\)0 \(\forall\)x;y
Dấu "=" xảy ra khi: \(\hept{\begin{cases}3x-5=0\\2y+1=0\end{cases}}\) => \(\hept{\begin{cases}3x=5\\2y=-1\end{cases}}\) => \(\hept{\begin{cases}x=\frac{5}{3}\\y=-\frac{1}{2}\end{cases}}\)
Vậy ...
a) \(2^m+2^n=2^{m+n}\)
\(\Leftrightarrow2^m+2^n=2^m.2^n\)
\(\Leftrightarrow2^m.2^n-2^m-2^n=0\)
\(\Leftrightarrow2^m\left(2^n-1\right)-\left(2^n-1\right)=1\)
\(\Leftrightarrow\left(2^m-1\right)\left(2^n-1\right)=1=1.1=\left(-1\right).\left(-1\right)\)
\(TH1:\hept{\begin{cases}2^m-1=1\\2^n-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=1\\n=1\end{cases}}\)
\(TH1:\hept{\begin{cases}2^m-1=-1\\2^n-1=-1\end{cases}}\Leftrightarrow m,n\in\left\{\varnothing\right\}\)
Vậy m = n = 1
\(2^m-2^n=256\)
\(\Leftrightarrow2^n\left(2^{m-n}-1\right)=2^8\)
\(TH1:m-n< 2\)\(\Rightarrow\hept{\begin{cases}n=8\\m=9\end{cases}}\)
\(TH2:m-n\ge2\)
VP chứa toàn thừa số nguyên tố 2 nên VP chẵn.
*Xét VT: \(2^{m-n}-1\)lẻ vì \(m-n\ge2\)
Suy ra : VT lẻ, VP chẵn ( vô lí )
Vậy m = 9 , n = 8
\(\left(-\frac{1}{3}\right)^{3+n}:\left(-\frac{1}{3}\right)^n=\left(-\frac{1}{3}\right)^{3+n-n}=\left(-\frac{1}{3}\right)^3=-\frac{1}{27}\)
2. n = {2;3;4}
3.2x + 2x + 3 = 288
=> 2x . 2 = 288 - 3 = 285
=> 2x = 285 : 2 = 285/2.
Mà 2x không thể bằng phân số nên x không tồn tại nhé
b) 3x - 6 - (8x + 4) - (10x + 15) = 50
=> 3x - 6 - 8x - 4 - 10x - 15 = 50
=> (3x - 8x - 10x) = 6+ 4 + 15 + 50
=> -15x = 75 => x = 75 : (-15) = -5
c) => 2x - 3 = 2 - x hoặc 2x - 3 = - (2 - x) (Vì 2 số có giá trị tuyệt đối bằng nhau thì chings bằng nhau hoặc đối nhau)
+) nếu 2x - 3 = 2 - x => 2x+ x = 2 + 3 => 3x = 5 => x = 5/3
+) nếu 2x - 3 = -(2 - x) => 2x - 3 = -2 + x => 2x - x = -2 + 3 => x = 1
Vậy x = 5/3 hoặc x = 1
a) (n-1)n+11-(n-1)n=0
(n-1)n(n-1)11-(n-1)n=0
(n-1)n[(n-1)11-1]=0
(n-1)n=0 hoặc (n-1)11-1=0
n-1=0 hoặc (n-1)11 =1
n=1 hoặc n-1 =1
n=1 hoặc n =2
1. \(2^x=4^{y-1}\Rightarrow2^x=\left(2^2\right)^{y-1}=2^{2y-2}\Rightarrow x=2y-2\)
\(27^y=3^{x+8}\Rightarrow\left(3^3\right)^y=3^{x+8}\Rightarrow3^{3y}=3^{x+8}\Rightarrow3y=x+8\)
ta có: x=2y-2
mà 3y=x+8
=> 3y=2y-2+8
=> 3y-2y+2-8=0
=> y-6=0
=> y=6
x=2y-2
=> x=2.6-2=12-2=10
Vậy x=10; y=6.
2.a.\(\left(-\frac{1}{3}\right)^{n-5}=\frac{1}{81}\)
\(\Rightarrow \left(-\frac{1}{3}\right)^{n-5}=\left(-\frac{1}{3}\right)^4\)
=> n-5=4
=> n=4+5
=> n=9
b.\(2^{-1}.2^n+4.2^n=9.2^5\)
\(\Rightarrow2^n.\left(2^{-1}+4\right)=9.32\)
=> 2n.(2-1+4)=288
=> 2n.(1/2+4)=288
=> 2n.9/2=288
=> 2n=288:9/2
=> 2n=64
=> 2n=26
Vậy n=6.
ai nhanh mk k cho.Giúp mk nha.Nếu đề sai thì nói vs mk
Đề thiếu rồi bạn