Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Nếu chỗ \(3k=3^n\) thì tham khảo nhé)
\(B=3+3^2+3^3+...+3^{51}\\ 3B=3^2+3^3+3^4+...+3^{52}\\ 3B-B=3^2+3^3+3^4+...+3^{52}-3-3^2-3^3-...-3^{51}\\ 2B=3^{51}-3\\ B=\dfrac{3^{51}-3}{2}\\ 2B+3=\dfrac{3^{51}-3}{2}.2+3=3^{51}=3^n\Rightarrow n=51\)
\(A=3+3^2+3^3+...+3^{10}\)
\(3A=3\cdot\left(3+3^2+3^3+...+3^{10}\right)\)
\(3A=3^2+3^3+3^4+...+3^{11}\)
\(3A-A=3^2+3^3+3^4+...+3^{11}-3-3^2-3^3-...-3^{10}\)
\(2A=3^{11}-3\)
Nên ta có:
\(2A+3=3^n\)
\(\Rightarrow3^{11}-3+3=3^n\)
\(\Rightarrow3^n=3^{11}\)
\(\Rightarrow n=11\)
b1
ta có : n+4 = (n+1)+3
=>n+1+3 chia hết cho n+1
vì n+1 chia hết cho n+1
=>3 chia hết cho n+1
=> n+1 chia hết cho 3
=> n+1 thuộc Ư 3 =[1;3]
=> n+1=1 n+1=3
n =1-1 n =3-1
n =0 n =2
vậy n thuộc [0;2]
a) \(3^2.x+2^3.x=51\)
\(\Leftrightarrow x\left(3^2+2^3\right)=51\)
\(\Leftrightarrow17x=51\)
\(\Leftrightarrow x=3\)
Vậy
b) \(6^2.2-\left(84-3^2.x\right):7=69\)
\(\Leftrightarrow\left(84-3^2.x\right):7=3\)
\(\Leftrightarrow84-3^2.x=21\)
\(\Leftrightarrow3^2.x=63\)
\(\Leftrightarrow x=7\)
Vậy
\(B=3+3^2+3^3+...+3^{51}\)
\(\Rightarrow B=3\left(1+3^1+3^2+...+3^{50}\right)\)
\(\Rightarrow B=3.\dfrac{3^{50+1}-1}{3-1}\)
\(\Rightarrow B=\dfrac{3\left(3^{51}-1\right)}{2}\)
Ta có :
\(2B+3=3n\)
\(\Rightarrow2.\dfrac{3\left(3^{51}-1\right)}{2}+3=3n\)
\(\Rightarrow3n-3=3\left(3^{51}-1\right)\)
\(\Rightarrow3\left(n-1\right)=3\left(3^{51}-1\right)\)
\(\Rightarrow n-1=3^{51}-1\)
\(\Rightarrow n=3^{51}-1+1\)
\(\Rightarrow n=3^{51}\)
\(B=3+3^2+3^3+...+3^{51}\)
\(3B=3^2+3^3+...+3^{52}\)
\(3B-B=3^2+3^3+3^4+...+3^{52}-3-3^2-...-3^{51}\)
\(2B=3^{52}-3\)
\(B=\dfrac{3^{52}-3}{2}\)
Mà:
\(2B+3=3^n\)
\(\Rightarrow2\cdot\dfrac{3^{52}-3}{2}+3=3^n\)
\(\Rightarrow3^{52}-3+3=3^n\)
\(\Rightarrow3^{52}=3^n\)
\(\Rightarrow n=52\)