Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{2x^3-18x}{x^4-81}\\ A=\dfrac{2x\left(x^2-9\right)}{\left(x^2+9\right)\left(x^2-9\right)}\\ A=\dfrac{2x}{x^2+9}\)
\(B=\dfrac{x^2-x-20}{x^2-25}\\ B=\dfrac{x\left(x-5\right)+4\left(x-5\right)}{\left(x+5\right)\left(x-5\right)}\\ B=\dfrac{\left(x-5\right)\left(x+4\right)}{\left(x+5\right)\left(x-5\right)}\\ B=\dfrac{x+4}{x+5}\)
\(C=\dfrac{8xy-6x^2}{12y^2-9xy}\\ C=\dfrac{2x\left(4y-3x\right)}{3y\left(4y-3x\right)}\\ C=\dfrac{2x}{3y}\)
\(E=\dfrac{x^2+5x+6}{x^2-4}\\ E=\dfrac{x\left(x+2\right)+3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\\ E=\dfrac{\left(x+2\right)\left(x+3\right)}{\left(x-2\right)\left(x+2\right)}\\ E=\dfrac{x+3}{x-2}\)
\(a,x^2-10x+25=0\)
\(\Rightarrow x^2-2.x.5+5^2=0\)
\(\Rightarrow\left(x-5\right)^2=0\)
\(\Rightarrow x=5\)
\(b,9x^2+6x+1=0\)
\(\Rightarrow\left(3x\right)^2+2.3x.1+1^2=0\)
\(\Rightarrow\left(3x+1\right)^2=0\)
\(\Rightarrow x=-\frac{1}{3}\)
\(c,x^2-2x=-1\)
\(\Rightarrow x^2-2x+1=0\)
\(\Rightarrow x^2-2.x.1+1^2=0\)
\(\Rightarrow\left(x-1\right)^2=0\)
\(\Rightarrow x=1\)
a)\(A=\left(x-5\right)^2\ge0\)
\(\Rightarrow Min=0\)dấu \(=\)xảy ra khi \(x=5\)
a) \(A=x^2-10x+25\)
\(A=\left(x^2-10x+25\right)+0\)
\(A=\left(x-5\right)^2+0\)
Mà \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow A\ge0\)
Dấu "=" xảy ra khi : \(x-5=0\Leftrightarrow x=5\)
Vậy ...
1.
a) \(xy+y^2=y\left(x+y\right)\)
b) \(x^2+4xy+4y^2-25=\left(x+2y\right)^2-25=\left(x+2y-5\right)\left(x+2y+5\right)\)
c) \(x^2-y^2+2x+1=\left(x+1\right)^2-y^2=\left(x+1-y\right)\left(x+1+y\right)\)
tick cho mk nha
2.
a) \(x^2+x-6=0\)
\(\Delta=1^2-4.1.\left(-6\right)=25\)
\(x_1=-3;x_2=2\)
b) \(x\left(x-2\right)-5x+10=0\)
\(\Leftrightarrow x^2-7x+10=0\)
\(\Delta\left(-7\right)^2-4.1.10=9\)
\(x_1=2;x_2=5\)
c) \(\left(x+2\right)^2+\left(x+3\right)^2-2\left(x-1\right)\left(x+1\right)=9\)
\(\Leftrightarrow x^2+4x+4+x^2+6x+9-2x^2+2=9\)
\(\Leftrightarrow x^2+4x+4+x^2+6x-2x^2+2=0\)
\(\Leftrightarrow10x+6=0\)
\(\Leftrightarrow10x=-6\)
\(\Rightarrow x=-\dfrac{3}{5}\)
tick cho mk nha
Bài 1: Không ghi lại đề:
a) 4.(x2+2x+1)+(4x2-4x+1)-8.(x2-9x-10)=11
<=> 8x2 +4x+5-8x2+72x+80=11
<=> 76x+85=11
=> 76x=-74
=> \(x=\dfrac{-37}{38}\)
b) x2+4x+2x+8=0
<=> x.(x+4)+2.(x+4)=0
=>(x+2).(x+4)=0
=> x=-2 hoặc x=-4
Bài 4:
Ta có:
\(a^2-2a+b^2+4b+4c^2-4c+6=0\)
\(\Leftrightarrow a^2-2a+1+b^2+4b+4+4c^2-4c+1\)
\(\Leftrightarrow\left(a^2-2b+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\)
Mà \(\hept{\begin{cases}\left(a-1\right)^2\ge0\\\left(b+2\right)^2\ge0\\\left(2c-1\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(a-1\right)^2=0\\\left(b+2\right)^2=0\\\left(2c-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}}\)
Vậy \(\left(a,b,c\right)=\left(1;-2;\frac{1}{2}\right)\)
a. x ( x + 4 ) ( 4 - x ) + ( x - 5 ) ( x2 + 5x + 25 ) = 3
- x ( x + 4 ) ( x - 4) + x3 - 53 = 3
-x . (x2 - 42) + x3 -125 = 3
-x3 + 16x + x3 - 125 = 3
16x - 125 = 3
16x = 128
x =8
\(\left(10^2+25\right)^2-\left(10^2-25\right)^2=10^n\)
=>\(\left(10^4+2.10.25+25^2\right)-\left(10^4-2.10.25+25^2\right)=10^n\)
=>\(10^4+500+25^2-10^4+2.10.25-25^2=10^n\)
=>\(500+500=10^n\)
=>\(1000=10^n\)
=>\(10^3=10^n\)
=>\(n=3\)
k hộ <3