Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(10^{n+2}-87.10^n=x.10^n\)
\(\Rightarrow10^n\left(100-87\right)=x.10^n\)
\(\Rightarrow10^n.13=x.10^n\)
\(\Rightarrow x=13.\)
\(10^{n+2}-87.10^n=x.10^n\)
\(\Rightarrow10^n.10^2-87.10^n=x.10^n\)
\(\Rightarrow10^n\left(100-87\right)=x.10^n\)
\(\Rightarrow10^n.13-10^n.x=0\)
\(\Rightarrow10^n\left(13-x\right)=0\)
\(\Rightarrow13-x=0\)
\(\Rightarrow x=13\)
B3:\(\Rightarrow90.10^n-10^n.10^2+10^n.10-20\Rightarrow10^n.\left(90-10^2\right)+10^n.10-20\)
\(\Rightarrow10^n.\left(90-100\right)+10^n.10-20\Rightarrow-10.10^n+10^n.10-20\Rightarrow-20\)
\(A=-\left(x^2-x+5\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{19}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{19}{4}\right]\)
\(=-\left(x-\frac{1}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}\)
Vậy \(A_{min}=-\frac{19}{4}\Leftrightarrow x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
b) 5(3xn + 1 - yn - 1) + 3(xn + 1 + 5yn - 1) - 5(3xn + 1 + 2yn - 1) - (3n + 1 - 10)
= 15xn + 1 - 5yn - 1 + 3xn + 1 + 15yn - 1 - 15xn + 1 - 10yn - 1 - 3n + 1 - 10
= (15xn + 1 + 3xn + 1 - 15xn + 1 - 3n + 1) + (15yn - 1 - 5yn - 1 - 10yn - 1) - 10
= xn + 1(15 + 3 - 15 - 3) + yn - 1(15 - 5 - 10) - 10
= 0 - 0 - 10 = -10 (đpcm)
a) h(x) = (x + 1)(x2 - x + 1) - (x - 1)(x2 + x + 1)
= x3 - x2 + x + x2 - x + 1 - x3 - x2 - x + x2 + x + 1
= (x3 - x3) - (x2 - x2 + x2 - x2) + (x - x - x + x) + (1 + 1)
= 1 + 1
= 2 (đpcm)
a) h(x) = ( x + 1 )( x2 - x + 1 ) - ( x - 1 )( x2 + x + 1 )
= ( x3 + 13 ) - ( x3 - 13 )
= x3 + 1 - x3 + 1
= 2
Vậy h(x) không phụ thuộc vào biến ( đpcm )
b) 5( 3xn+1 - yn-1 ) + 3( xn+1 + 5yn-1 ) - 5( 3xn+1 + 2yn-1 ) - ( 3xn+1 - 10 )
= 15xn+1 - 5yn-1 + 3xn+1 + 15yn-1 - 15xn+1 - 10yn-1 - 3xn+1 + 10
= ( 15xn+1 + 3xn+1 - 15xn+1 - 3xn+1 ) + ( -5yn-1 + 15yn-1 - 10yn-1 ) + 10
= 0 + 0 + 10 = 10
Vậy giá trị của biểu thức không phụ thuộc vào biến ( đpcm )
a) Cho x2 - x + 5=0 =>x={ \(\frac{1}{2}+\frac{\sqrt{19}}{2}i;\frac{1}{2}-\frac{\sqrt{19}}{2}i\) }
Thay giá trị của x là \(\frac{1}{2}+\frac{\sqrt{19}}{2}i\)hoặc \(\frac{1}{2}-\frac{\sqrt{19}}{2}i\) vừa tìm được vào x4 - x3 + 6x2- x sẽ luôn được kết quả là -5
=>-5 +a=0 => a=5
b) Cho x+2=0 => x=-2
Thay giá trị của x vào biểu thức 2x3 - 3x2 + x sẽ được kết quả là -30
=> -30 + a=0 => a=30
a) Cho 3n +1 =0 => n= \(\frac{-1}{3}\)
Thay n= \(\frac{-1}{3}\)vào biểu thức 3n3 + 10n2 -5 sẽ được kết quả -4
Vậy n = -4
b) Cho n-1=0 => n=1
Thay n=1 vào biểu thức 10n2 + n -10 sẽ được kết quả là 1
Vậy n = 1
Câu 1: xin sửa đề :D
CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)
\(=\left(n^2+3n+1\right)^2\)là scp
10n(100 -87) = x.10n
x = 10n/ 13.10n
x = 1/13