K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2015

Gọi ƯCLN(3n+1; 5n+4) là d. Ta có:

3n+1 chia hết cho d => 15n+5 chia hết cho d

5n+4 chia hết cho d => 15n+12 chia hết cho d

=> 15n+12-(15n+5) chia hết cho d

=> 7 chia hết cho d

=> d = 7

=> ƯCLN(3n+1; 5n+4) = 7

19 tháng 12 2017
Dap so la 7 ban nha
25 tháng 7 2015

Đặt d=ƯCLN(3n+1;5n+4)

=> (3n+1) chia hết cho d; (5n+4) chia hết cho d

=> (5n+4)-(3n+1) chia hết cho d

=>   3(5n+4)-5(3n+1) chia hết cho d

=>(15n+12)-(15n+5) chia hết cho d

=>   7 chia hết cho d

=> d thuộc {1;7}

=> d=7

Vậy WCLN(3n+1;5n+1)=7

Lưu ý bạn nên đổi chữ thuộc và chia hết thành dấu

có gì ko hiểu thì bạn hỏi mình nghe nếu mình đúng thì **** nha bạn


 

29 tháng 11 2018

\(\frac{3n+4}{3n-1}=1+\frac{5}{3n-1}\)

Để 3n+4 chia hết cho 3n-1 thì 5 chia hết cho 3n-1 hay \(3n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta có bảng:

3n-1-5-115
3n-4026
n-4/302/32

Vì n thuộc N nên n=0;2

14 tháng 11 2021

b) \(\Rightarrow\left(n+2\right)\inƯ\left(19\right)=\left\{-19;-1;1;19\right\}\)

Do \(n\in N\)

\(\Rightarrow n\in\left\{17\right\}\)

a) Do \(n\in N\)

\(\Rightarrow n\inƯ\left(15\right)=\left\{1;3;5;15\right\}\)

c) \(\Rightarrow\left(n+1\right)+8⋮\left(n+1\right)\)

Do \(n\in N\Rightarrow n\inƯ\left(8\right)=\left\{1;2;4;8\right\}\)

d) \(\Rightarrow3\left(n+1\right)+18⋮\left(n+1\right)\)

Do \(n\in N\Rightarrow\left(n+1\right)\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)

\(\Rightarrow n\in\left\{0;1;2;5;8;17\right\}\)

e) \(\Rightarrow\left(n-2\right)+10⋮\left(n-2\right)\)

Do \(n\in N\Rightarrow\left(n-2\right)\inƯ\left(10\right)=\left\{-2;-1;1;2;5;10\right\}\)

\(\Rightarrow n\in\left\{0;1;3;4;7;12\right\}\)

f) \(\Rightarrow n\left(n+4\right)+11⋮\left(n+4\right)\)

Do \(n\in N\Rightarrow\left(n+4\right)\inƯ\left(11\right)=\left\{11\right\}\)

\(\Rightarrow n\in\left\{7\right\}\)

 

14 tháng 11 2021

 \(19:\left(n+2\right)\)

⇒ (n+2)∈Ư(19)=(1,19)

n+2            1               19

n               -1(L)           17(TM)

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Đề thiếu. Bạn xem lại đề.

27 tháng 11 2023

Bạn chép thiếu rồi hay sao ấy bạn

8 tháng 1 2017

2 tháng 5 2017

Sơ đồ con đường

Lời giải chi tiết

Bước 1. Tách.

Bước 2. Áp dụng tính chất chia hết của một tổng.

Bước 3. Tìm n+1.

Bước 4. Tìm n.

Ta có: 3 n + 4 = 3 n + 3 + 1 = 3 n + 1 + 1

Để  3 n + 4 ⋮ n + 1  thì  1 ⋮ n + 1

⇒ n + 1 = 1 ⇒ n = 0

18 tháng 12 2023

a, 4n + 5 ⋮ n  ( n \(\in\) N*)

           5 ⋮  n

\(\in\)Ư(5) = {-5; -1; 1; 5}

Vì n \(\in\) N nên n \(\in\) {1; 5}

b, 38 - 3n ⋮ n  (n \(\in\) N*)

     38 ⋮ n

\(\in\) Ư(38)

38 =  2.19

Ư(38) = {-38; -19; -2; -1; 1; 2; 19; 38}

Nì n \(\in\) N* nên n \(\in\) {1; 2; 19; 38}

18 tháng 12 2023

c, 3n + 4  ⋮ n - 1 ( n \(\in\) N; n ≠ 1)

   3(n - 1) + 7 ⋮ n - 1  

                   7 ⋮ n  -1

  n - 1 \(\in\) Ư(7) = {-7; -1; 1; 7}

lập bảng ta có:

n - 1 -7 -1 1 7
n -6 (loại) 0 2

8

 

Theo bảng trên ta có n \(\in\) {0 ;2; 8}