Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{n}{6}=\frac{1}{2}-\frac{1}{m}=\frac{m-2}{2m}\)
\(\Rightarrow6.\frac{n}{6}=6.\left(\frac{m-2}{2m}\right)\)
\(\Rightarrow n=6.\frac{m-2}{2m}\)\(=\frac{3m-6}{m}\)
\(\Rightarrow n=3-\frac{6}{m}\)
Để m ; n \(\in\) Z thì m là Ư ( 6 ) = { -1 ; 1 ; -2 ; 2 ; -3 ; 3 ; -6 ; 6 } => n = ( 9 ; -3 ; 6 ; 0 ; 5 ; 1 ; 4 ; 2 )
\(a,\text{ Để A }\in\text{ Z }\Leftrightarrow\text{ }\left(n+1\right)\inƯ\left(2\right)\)
\(\text{Mà }Ư\left(2\right)=\left\{\pm1;\pm2\right\}\)
\(\text{Do đó:}\) \(n+1=1\Leftrightarrow n=0\)
\(\text{hoặc }n+1=-1\Leftrightarrow n=-2\)
\(\text{hoặc }n+1=2\Leftrightarrow n=1\)
\(\text{hoặc }n+1=-2\Leftrightarrow n=-3\)
\(\text{Vậy: A }\in Z\Leftrightarrow n=\left\{0;-2;1;-3\right\}.\)
\(\text{a) Để B}\in Z\Leftrightarrow n-2\inƯ\left(3\right)\)
\(\text{Mà }Ư\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\text{Do đó: }n-2=1\Leftrightarrow n=3\)
\(\text{hoặc }n-2=-1\Leftrightarrow n=1\)
\(\text{hoặc }n-2=3\Leftrightarrow n=5\)
\(\text{hoặc }n-2=-3\Leftrightarrow n=-1\)
\(\text{Vậy: B}\in Z\Leftrightarrow n=\left\{3;1;5;-1\right\}.\)
\(\frac{A}{n}=\frac{4n+4}{n}=4+\frac{4}{n}\)
\(\Rightarrow n\in U\left(4\right)\)
Lập bảng tiếp nhé!
\(\frac{B}{n}=\frac{5n+6}{n}=5+\frac{6}{n}\)
Lập bảng
\(2.\)
a)\(\left(\frac{3}{29}-\frac{1}{5}\right)\cdot\frac{29}{3}=\frac{3}{29}\cdot\frac{29}{3}-\frac{1}{5}\cdot\frac{29}{3}=1-\left(1+\frac{14}{15}\right)=1-1-\frac{14}{15}=\frac{14}{15}\)
b)\(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}=\frac{5}{9}\cdot\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)
\(1,-\frac{3}{29}+\frac{-7}{29}\le\frac{x}{29}\le-\frac{3}{29}-\frac{5}{29}\)
\(\Rightarrow-\frac{10}{29}\le\frac{x}{29}\le-\frac{8}{29}\Rightarrow-10\le x\le-8\)
\(\Rightarrow x=\left\{-8;-9;-10\right\}\)
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\Rightarrow2S=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)
\(S=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\)
\(\Rightarrow2S-S=S=1-\frac{1}{2^{100}}\)
K: \(m\ne0\)
Ta có: \(\frac{1}{m}+\frac{n}{6}=\frac{1}{2}\Rightarrow\frac{6+mn}{6m}=\frac{1}{2}\Rightarrow6+mn=3m\)
\(\Rightarrow6=m\left(3-n\right)\)
Vậy \(m\inƯ\left(6\right)=\left\{6;3;2;1;-1;-2;-3;-6\right\}\)
Ta có bảng:
m | 6 | 3 | 2 | 1 | -1 | -2 | -3 | -6 |
3-n | 1 | 2 | 3 | 6 | -6 | -3 | -2 | -1 |
n | 2 | 1 | 0 | -3 | 9 | 6 | 5 | 4 |
(m,n) | (6,2) | (3,1) | (2,0) | (1,-3) | (-1,9) | (-2,6) | (-3,5) | (-6,4) |
Vậy ta có 8 cặp số thỏa mãn.
mn/2n-4/2n=1/3
3mn/6n-6/6n=2n/6n
=> 3mn-6=2n